SS-ZG548: ADVANCED DATA MINING

Logistics and Introduction

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

July 24, 2021

ONLINE

(WILP @ BITS-Pilani July-Dec 2021)

http://ktiwari.in/adm

What is data?

What is data?

Fact or values

What is data?

Fact or values

What is Information?

What is data?

Fact or values

What is Information?

Processed output of date

What is data?

Fact or values

What is Information?

Processed output of date

What is Knowledge?

What is data?

Fact or values

What is Information?

Processed output of date

What is Knowledge?

Understanding of information.

X1	X2	Х3	Υ
2	3	4	1
8	7	5	10
9	6	1	14
7	4	9	2
1	5	5	1
5	3	6	2
7	4	4	7
6	3	5	4
3	2	3	

The Knowledge

What is data-mining?

The Knowledge

What is **data-mining**?

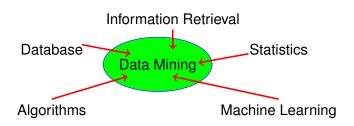
Computation to facilitate Knowledge Discovery in Databases (KDD)

The Knowledge

What is data-mining?

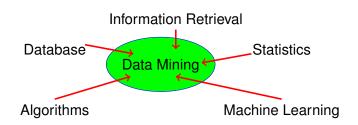
Computation to facilitate Knowledge Discovery in Databases (KDD)

Goal of Data Mining (motivation of doing the same?)


To provide efficient tools and techniques for KDD

Knowledge Discovering in Databases (KDD) involves

- Selection: collection of data
- Preprocessing: deal with incorrect/missing data
- Transformation: common format and preprocessing
- Opening the state of the sta
- Interpretation/Evaluation: presentation and visualization


Data Mining

Data mining is fairly involved discipline. It includes many fields such as database, information retrieval, statistics, and machine learning.

Data Mining

Data mining is fairly involved discipline. It includes many fields such as database, information retrieval, statistics, and machine learning.

It differs from traditional query processing

- Query: not well formed. Miner may not know what he wants.
- Data: different version. Preprocessed and modified.
- Output: may not a subset. It could be an analysis.

Data Mining has three parts

Model: is to be fit on data

Search: technique to evaluate data point

Preference: criteria to select one model over other

Data Mining has three parts

Model: is to be fit on data

Search: technique to evaluate data point

Preference: criteria to select one model over other

Example:

Assume a credit card company wants to decide whether a transaction should be

Authorized

Ask for more information

Opening

Data Mining has three parts

Model: is to be fit on data

Search: technique to evaluate data point

Preference: criteria to select one model over other

Example:

Assume a credit card company wants to decide whether a transaction should be

Authorized

Ask for more information

Opening

Search requires evaluation of past data.

Data Mining has three parts

Model: is to be fit on data

Search: technique to evaluate data point

Preference: criteria to select one model over other

Example:

Assume a credit card company wants to decide whether a transaction should be

Authorized

Ask for more information

Opening

Search requires evaluation of past data. **Model** associates with the criteria to decide for one of the categories.

Data Mining has three parts

Model: is to be fit on data

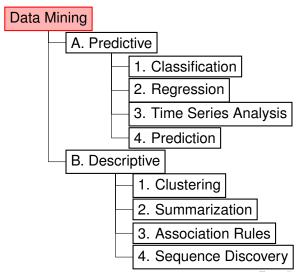
Search: technique to evaluate data point

Preference: criteria to select one model over other

Example:

Assume a credit card company wants to decide whether a transaction should be

Authorized


Ask for more information

Opening

Search requires evaluation of past data. **Model** associates with the criteria to decide for one of the categories. **Preference** is given to criteria that suits the data best (want to reduce number of frauds or amount of fraud).

Data Mining: Tasks

Two broad categories of data mining models are *Predictive* and *Descriptive*. Some of the related tasks are

Classification

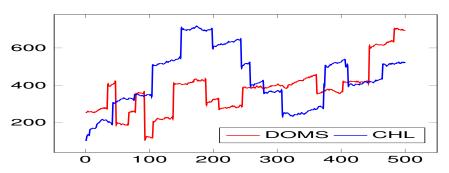
Classification maps data into *predefined* labels.

Example: Lots of mails are there in my mail box. Can you tell me which are SPAM?

- Task of supervised learning
- Often based on some patterns or characteristics
- We can use the frequency of words
- Assumption is that some words appears more or less frequently in SPAM

Regression

Regression is used to map data into real valued variable.


Example: What is the cost of my house?

- Task of supervised learning
- We have data about the cost of house based on features such as
 - location
 - Plot area
 - number of rooms
 - garden available or not
 - how old it is
- Current economical conditions can also matter
- Dimensionality is high

Time Series Analysis

In time series analysis the value of attribute is examined over time.

Example: Which stock is better?

- The values are obtained as evenly spaced time points (daily, weekly, hourly, etc.)
- Distance measures are used to find similarity
- Structural analysis is done

Predicting future data states based on current or historical data.

Example: What comes next?

Predicting future data states based on current or historical data.

Example: What comes next?

$$2,4,6,8,10,...?...$$

Predicting future data states based on current or historical data.

Example: What comes next?

$$2, 4, 6, 8, 10, \dots?...$$

(10jul, rain), (11jul, rain), (12jul, no - rain), (13jul, ...?...)

Predicting future data states based on current or historical data.

Example: What comes next?

- Predication can sometimes be seen as classification
- Application includes weather, flood, pattern recognition.

Clustering

Clustering is similar to classification except the groups are not pre-defined.

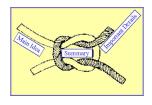
Example: How many kind of files are there in my directory?

- Unsupervised learning setting
- We can use file name
- Words it has

Clustering

Clustering is similar to classification except the groups are not pre-defined.

Example: How many kind of files are there in my directory?


- Unsupervised learning setting
- We can use file name
- Words it has

Example: Who would take my offer?

 The database has information about age, gender, income, location, .. etc.

Summarization

Summarization maps data into subsets with associated simple descriptions. It is also called characterization or generalization.

Example: How to compare two universities?

- Average JEE rank
- Average number of publication
- Student/Faculty ratio
- Combination

Association rules tries to do linked analysis.

Example: Whether sames products are selling together?

- $I = \{i_1, i_2, i_3, ... i_m\}, T = \{t_1, t_2, t_3, ..., t_n\}$ and $t_i \subseteq I$
- Minimum support count should be maintained
- Can you see: Subset of frequent items is also frequent
- Apriori analysis

Association rules tries to do linked analysis.

Example: Whether sames products are selling together?

- $I = \{i_1, i_2, i_3, ... i_m\}, T = \{t_1, t_2, t_3, ..., t_n\}$ and $t_i \subseteq I$
- Minimum support count should be maintained
- Can you see: Subset of frequent items is also frequent
- Apriori analysis

Let's do it:

 $t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$ and minimum support count be 2

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Symb	
{1}	
{2}	
{3}	
{4}	
{5}	

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Symb	Sup
1	3 ✓
{2 }	3 ✓
{3}	4 🗸
4	1
{5}	4 √

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Symb	Sup
{1 }	3 ✓
{2}	3 ✓
{3}	4 🗸
{4}	1
{5 }	4 🗸

Symb	Sup
{1,2}	1
{1,3}	3 ✓
{1,5}	2 🗸
{2,3}	2 🗸
{2,5}	3 ✓
{3,5}	3 🗸

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Sup
3 ✓
3 ✓
4 🗸
1
4 🗸

Symb	Sup
{1,2}	1
{1,3}	3 ✓
{1,5}	2 🗸
{2,3}	2 🗸
{2,5}	3 ✓
{3,5}	3 ✓

Symb	Sup
{1,2,3}	1
{1,2,5}	1
{1,3,5}	2 🗸
{2,3,5}	2 √

Symb	Sup
{1,2,3,5}	1

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Symb	Sup
1	3 ✓
{2 }	3 ✓
{3}	4 🗸
4 }	1
{5 }	4 🗸

Symb	Sup
{1,2}	1
{1,3}	3 ✓
{1,5}	2 🗸
{2,3}	2 🗸
{2,5}	3 ✓
{3,5}	3 ✓

Symb	Sup
{1,2,3}	1
{1,2,5}	1
{1,3,5}	2 🗸
{2,3,5}	2 🗸

Symb	Sup
{1,2,3,5}	1

Try yourself:

Let $I = \{A, B, C, D, E, F\}$ and $T = \{t_1 = (A, B, C), t_2 = (A, F), t_3 = (A, B, C, E), t_4 = (A, B, D, F), t_5 = (C, F), t_6 = (A, B, C), t_7 = (A, B, C, E), t_8 = (C, D, E), t_9 = (B, D, E)\}$ and min support 3

Sequence Discovery

Sequence Discovery is used to discover sequential patterns in the data.

Example: what is my website access pattern?

- Pattern is based on a time sequence of a action
- It is pattern discovery problem

KDD Issues

- Human interaction
- Overfitting, Outliers
- Large dataset
- High dimension
- Multimedia data
- Missing data
- Irrelevant data
- Noisy data
- Changing data

And much more...

Syllabus

Introduction and basics Distributed data mining Stream data mining
Sequence mining

Text mining Web Search

Mining complex structures (Trees, Graphs)

Case study: information retrieval, social network mining

Evaluation Scheme (July-Nov 2019)

- 3 Quiz/Assignment: 5% Each. Aug 16, Sept 16, Oct 16
- Mid-Semester Test: 35% (2H, Closed Book) 24 Sept 2021 (FN)
- Comprehensive Exam: 50% (3H, Open Book) 12 Nov 2021 (FN)

NOTE: All evaluation components are to be attempted individually. Plagiarism of any form is not accepted.

Thank You!

Thank you very much for your attention!

Queries ?