SS-ZG548: ADVANCED DATA MINING

Incremental Data Mining

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

July 31, 2021

ONLINE

(WILP @ BITS-Pilani July-Dec 2021)

http://ktiwari.in/adm

Recap: Data Mining

Data mining does KDD: knowledge discovery in databases

KDD involves five components 1) collection of data, 2) preprocessing, 3) transformation, 4) data mining, and 5) interpretation.

- Data mining has three parts **Model**, **Preference**, and **Search**
- Two broad categories 1) Predictive if we focus on new data involving classification, regression, time series analysis, and prediction 2) Descriptive when we want to understand/describe the data itself involving clustering, summarization, association rules, or sequence discovery

Issues

Human interaction, Overfitting, Outliers, Large dataset, High dimension, Multimedia data, missing data, irrelevant data, noisy data, changing data.

Association rules tries to do linked analysis.

•
$$I = \{i_1, i_2, i_3, ... i_m\}, T = \{t_1, t_2, t_3, ..., t_n\}$$
 and $t_i \subseteq I$

¹ Mining association rules between sets of items in large databases, *R Agrawal, T Imielinski, and A Swami,* SIGMOD, 22(2), pp 207–216, ACM-1993

Association rules tries to do linked analysis.

- $I = \{i_1, i_2, i_3, ... i_m\}, T = \{t_1, t_2, t_3, ..., t_n\}$ and $t_i \subseteq I$
- Minimum support count should be maintained

¹ Mining association rules between sets of items in large databases, *R Agrawal, T Imielinski, and A Swami,* SIGMOD, 22(2), pp 207–216, ACM-1993

Association rules tries to do linked analysis.

- $I = \{i_1, i_2, i_3, ... i_m\}, T = \{t_1, t_2, t_3, ..., t_n\}$ and $t_i \subseteq I$
- Minimum support count should be maintained
- Can you see: Subset of frequent items is also frequent

¹ Mining association rules between sets of items in large databases, *R Agrawal, T Imielinski, and A Swami,* SIGMOD, 22(2), pp 207–216, ACM-1993

Association rules tries to do linked analysis.

- $I = \{i_1, i_2, i_3, ... i_m\}, T = \{t_1, t_2, t_3, ..., t_n\}$ and $t_i \subseteq I$
- Minimum support count should be maintained
- Can you see: Subset of frequent items is also frequent
- Apriori analysis ¹

Mining association rules between sets of items in large databases, *R Agrawal, T Imielinski, and A Swami,* SIGMOD, 22(2), pp 207–216, ACM-1993

Association rules tries to do linked analysis.

Example: Whether same products are selling together?

- $I = \{i_1, i_2, i_3, ... i_m\}, T = \{t_1, t_2, t_3, ..., t_n\}$ and $t_i \subseteq I$
- Minimum support count should be maintained
- Can you see: Subset of frequent items is also frequent
- Apriori analysis ¹

Let's do it:

 $t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$ and minimum support count be 2

¹ Mining association rules between sets of items in large databases, *R Agrawal, T Imielinski, and A Swami,* SIGMOD, 22(2), pp 207–216, ACM-1993

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Symb	Sup	
{1 }	3 ✓	
{2 }	3 ✓	
{3 }	4 🗸	
4	1	
{5}	4 🗸	

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Symb	Sup
{1}	3 ✓
{2}	3 ✓
{3}	4 🗸
4 }	1
{5}	4 🗸

Symb	Sup	
{1,2}	1	
{1,3}	3 ✓	
{1,5}	2 🗸	
{2,3}	2 🗸	
{2,5}	3 ✓	
{3,5}	3 ✓	

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Symb	Sup
1	3 ✓
{2}	3 ✓
{3}	4 🗸
4 }	1
{5}	4 🗸

Sup
1
3 ✓
2 🗸
2 🗸
3 ✓
3 ✓

Symb	Sup
{1,2,3}	1
{1,2,5}	1
{1,3,5}	2 🗸
{2,3,5}	2 🗸

$$t_1 = (1,3,4), t_2 = (2,3,5), t_3 = (1,2,3,5), t_4 = (2,5), t_5 = (1,3,5)$$

Symb	Sup
{1}	3 ✓
{2}	3 ✓
{3}	4 🗸
4 }	1
{5 }	4 🗸

Sup	
1	
3 ✓	
2 🗸	
2 🗸	
3 ✓	
3 ✓	

Sup
1
1
2 🗸
2 🗸

Symb	Sup
{1,2,3,5}	1

Mathematical model of Association Rule Mining

• Let $I = \{i_1, i_2, ..., i_m\}$ be set of items

Mathematical model of Association Rule Mining

- Let $I = \{i_1, i_2, ..., i_m\}$ be set of items
- Let $T = \{t_1, t_2, ..., t_n\}$ be set of transactions where $t_i \subseteq I$

Mathematical model of Association Rule Mining

- Let $I = \{i_1, i_2, ..., i_m\}$ be set of items
- Let $T = \{t_1, t_2, ..., t_n\}$ be set of transactions where $t_i \subseteq I$
- t_i is said to contain $X \subseteq I$ if $X \subseteq t_i$

Mathematical model of Association Rule Mining

- Let $I = \{i_1, i_2, ..., i_m\}$ be set of items
- Let $T = \{t_1, t_2, ..., t_n\}$ be set of transactions where $t_i \subseteq I$
- t_i is said to contain $X \subseteq I$ if $X \subseteq t_i$

An association rule is an implication of the form $X \Rightarrow Y$, where $X \subseteq I$, $Y \subseteq I$ and $X \cap Y = \phi$

Mathematical model of Association Rule Mining

- Let $I = \{i_1, i_2, ..., i_m\}$ be set of items
- Let $T = \{t_1, t_2, ..., t_n\}$ be set of transactions where $t_i \subseteq I$
- t_i is said to contain $X \subseteq I$ if $X \subseteq t_i$

An association rule is an implication of the form $X \Rightarrow Y$, where $X \subseteq I$, $Y \subseteq I$ and $X \cap Y = \phi$

 An association rule X ⇒ Y has a support s in set T if s% of the transactions in T contains X ∪ Y

$$support(X \Rightarrow Y) = P(X \cup Y)$$

Mathematical model of Association Rule Mining

- Let $I = \{i_1, i_2, ..., i_m\}$ be set of items
- Let $T = \{t_1, t_2, ..., t_n\}$ be set of transactions where $t_i \subseteq I$
- t_i is said to contain $X \subseteq I$ if $X \subseteq t_i$

An association rule is an implication of the form $X \Rightarrow Y$, where $X \subseteq I$, $Y \subseteq I$ and $X \cap Y = \phi$

• An association rule $X \Rightarrow Y$ has a **support** s in set T if s% of the transactions in T contains $X \cup Y$

$$support(X \Rightarrow Y) = P(X \cup Y)$$

 The association rule X ⇒ Y holds in the transaction set T with confidence c if c% of the transactions in T that contain X also contain Y

$$confidence(X \Rightarrow Y) = P(Y|X)$$

An Example

Find **support** and **confidence** for $X \Rightarrow Y$ in following database

(Z) (Z) (X,Y) (X,Y) (X,Y) (X,Z) (X,Z) (Z) (Z)

• support = $P(X \cup Y)$

An Example

Find **support** and **confidence** for $X \Rightarrow Y$ in following database

(Z) (Z) (X,Y) (X,Y) (X,Y) (X,Z) (X,Z) (Z) (Z)

• support =
$$P(X \cup Y)$$

• confidence = P(Y|X)

An Example

Find **support** and **confidence** for $X \Rightarrow Y$ in following database

(Z) (Z) (X,Y) (X,Y) (X,Y) (X,Z) (X,Z) (Z) (Z)

• support =
$$P(X \cup Y)$$

• confidence =
$$P(Y|X)$$

For a given *support* and *confidence* the problem of mining association rules is to find out all the association rules that have confidence and support greater than the corresponding thresholds.

For a given *support* and *confidence* the problem of mining association rules is to find out all the association rules that have confidence and support greater than the corresponding thresholds.

It is a two-step process

• Find all frequent item sets: $\{X : support(X) \geq S_{min}\}$

For a given *support* and *confidence* the problem of mining association rules is to find out all the association rules that have confidence and support greater than the corresponding thresholds.

It is a two-step process

- Find all frequent item sets: $\{X : support(X) \geq S_{min}\}$
- ② Generate association rules from the frequent item set: For any pair of frequent item set W and X satisfying $X \subset W$, of $support(X)/support(W) \ge C_{min}$, then $X \Rightarrow Y$ is a valid rule where Y = W X.

For a given *support* and *confidence* the problem of mining association rules is to find out all the association rules that have confidence and support greater than the corresponding thresholds.

It is a two-step process

- Find all frequent item sets: $\{X : support(X) \geq S_{min}\}$
- ② Generate association rules from the frequent item set: For any pair of frequent item set W and X satisfying $X \subset W$, of $support(X)/support(W) \ge C_{min}$, then $X \Rightarrow Y$ is a valid rule where Y = W X.
 - Second part is straight forward

For a given *support* and *confidence* the problem of mining association rules is to find out all the association rules that have confidence and support greater than the corresponding thresholds.

It is a two-step process

- Find all frequent item sets: $\{X : support(X) \geq S_{min}\}$
- ② Generate association rules from the frequent item set: For any pair of frequent item set W and X satisfying $X \subset W$, of $support(X)/support(W) \geq C_{min}$, then $X \Rightarrow Y$ is a valid rule where Y = W X.
 - Second part is straight forward
 - Most of the research interest lies in solving the first part

For a given *support* and *confidence* the problem of mining association rules is to find out all the association rules that have confidence and support greater than the corresponding thresholds.

It is a two-step process

- Find all frequent item sets: $\{X : support(X) \geq S_{min}\}$
- ② Generate association rules from the frequent item set: For any pair of frequent item set W and X satisfying $X \subset W$, of $support(X)/support(W) \ge C_{min}$, then $X \Rightarrow Y$ is a valid rule where Y = W X.
 - Second part is straight forward
 - Most of the research interest lies in solving the first part

Prior work includes *Apriori*, *DHP*, *partition based*, *TreeProjection*, FP-Tree. and constraint-based ones.

 Uses prior knowledge of k-item set to explore (k+1)-item set in a levelwise process.

- Uses prior knowledge of k-item set to explore (k+1)-item set in a levelwise process.
- The set of frequent 1-item sets L₁ is initially found

- Uses prior knowledge of k-item set to explore (k+1)-item set in a levelwise process.
- The set of frequent 1-item sets L₁ is initially found
- L₁ is then used by performing join and prune actions to form the set of candidate 2-items sets C₂

- Uses prior knowledge of k-item set to explore (k+1)-item set in a levelwise process.
- The set of frequent 1-item sets L₁ is initially found
- L₁ is then used by performing join and prune actions to form the set of candidate 2-items sets C₂
- In next data scan, the set of frequent 2-item sets L_2 are identified

- Uses prior knowledge of k-item set to explore (k+1)-item set in a levelwise process.
- The set of frequent 1-item sets L₁ is initially found
- L₁ is then used by performing join and prune actions to form the set of candidate 2-items sets C₂
- In next data scan, the set of frequent 2-item sets L_2 are identified
- The whole process continues iteratively until there is no more candidate item sets

- Uses prior knowledge of k-item set to explore (k+1)-item set in a levelwise process.
- The set of frequent 1-item sets L₁ is initially found
- L₁ is then used by performing join and prune actions to form the set of candidate 2-items sets C₂
- In next data scan, the set of frequent 2-item sets L_2 are identified
- The whole process continues iteratively until there is no more candidate item sets

Example:

Consider $I = \{A, B, C, D, E, F\}$ and transaction $T = \{t_1 = (A, B, C), t_2 = (A, F), t_3 = (A, B, C, E), t_4 = (A, B, D, F), t_5 = (C, F), t_6 = (A, B, C), t_7 = (A, B, C, E), t_8 = (C, D, E), t_9 = (B, D, E), \}$ and the minimum support be greater then 3.

Apriori at work

Consider transactions T

```
T_1=(A,B,C)
T_2=(A,F)
T_3=(A,B,C,E)
T_4=(A,B,D,F)
T_5=(C,F)
T_6=(A,B,C)
T_7=(A,B,C,E)
T_8=(C,D,E)
T_9=(B,D,E)
```

Apriori at work

Consider transactions T

 $T_1=(A,B,C)$ $T_2=(A,F)$ $T_3=(A,B,C,E)$ $T_4=(A,B,D,F)$ $T_5=(C,F)$ $T_6=(A,B,C)$ $T_7=(A,B,C,E)$ $T_8=(C,D,E)$ $T_9=(B,D,E)$

	Item	Supp
	{A}	6
Scan T	{B}	6
$\longrightarrow c_1$	{C}	6
•	{D}	3
	ξE}	4
	{F}	3

Apriori at work

Consider transactions T

 $\begin{array}{l} T_1 = (A,B,C) \\ T_2 = (A,F) \\ T_3 = (A,B,C,E) \\ T_4 = (A,B,D,F) \\ T_5 = (C,F) \\ T_6 = (A,B,C) \\ T_7 = (A,B,C,E) \\ T_8 = (C,D,E) \\ T_9 = (B,D,E) \end{array}$

Consider transactions T

	Item
<i>C</i> ₂	{A,B} {A,C} {A,E} {B,C}
	{B,E} {C,E}

Consider transactions T

	Item	Supp
	{A}	6
L_1	{B}	6
	{C}	6
	{E}	4

	Item		Item	Supp
			ILGIII	Supp
	{A,B}		{ A,B }	5
	{A,C}	Scan T	{A,C}	4
C_2	{A,E}	$\longrightarrow c_2$	{A,E}	2
-	{B,C}		{B,C}	4
	{B,E}		{B,E}	3
	{C,E}		{C,E}	3

Consider transactions T

Consider transactions T

 $\begin{array}{c} T_1 = (A,B,C) \\ T_2 = (A,F) \\ T_3 = (A,B,C,E) \\ T_4 = (A,B,D,F) \\ T_5 = (C,F) \\ T_6 = (A,B,C) \\ T_7 = (A,B,C,E) \\ T_8 = (C,D,E) \\ T_9 = (B,D,E) \\ \end{array}$

Consider transactions T

 $\begin{array}{l} T_1 = (A,B,C) \\ T_2 = (A,F) \\ T_3 = (A,B,C,E) \\ T_4 = (A,B,D,F) \\ T_5 = (C,F) \\ T_6 = (A,B,C) \\ T_7 = (A,B,C,E) \\ T_8 = (C,D,E) \\ T_9 = (B,D,E) \\ \end{array}$

Consider transactions T

 $\begin{array}{l} T_1 = (A,B,C) \\ T_2 = (A,F) \\ T_3 = (A,B,C,E) \\ T_4 = (A,B,D,F) \\ T_5 = (C,F) \\ T_6 = (A,B,C) \\ T_7 = (A,B,C,E) \\ T_8 = (C,D,E) \\ T_9 = (B,D,E) \\ \end{array}$

If $X \subset W$ & $support(X)/support(W) \geq C_{min}$, then $X \Rightarrow W - X$

If
$$X \subset W \& support(X)/support(W) \ge C_{min}$$
, then $X \Rightarrow W - X$

Transactions

```
T_1=(A,B,C)

T_2=(A,F)

T_3=(A,B,C,E)

T_4=(A,B,D,F)

T_5=(C,F)

T_6=(A,B,C)

T_7=(A,B,C,E)

T_8=(C,D,E)

T_9=(B,D,E)
```

If
$$X \subset W$$
 & $support(X)/support(W) \geq C_{min}$, then $X \Rightarrow W - X$

Transactions

$$\begin{split} T_1 &= (A,B,C) \\ T_2 &= (A,F) \\ T_3 &= (A,B,C,E) \\ T_4 &= (A,B,D,F) \\ T_5 &= (C,F) \\ T_6 &= (A,B,C) \\ T_7 &= (A,B,C,E) \\ T_8 &= (C,D,E) \\ T_9 &= (B,D,E) \end{split}$$

Our frequent item contains

 $\begin{array}{l} \blacktriangleright \ \, \{A\}_6 \ \{B\}_6 \ \{C\}_6 \ \{E\}_4 \ \{A,B\}_5 \ \{A,C\}_4 \ \{B,C\}_4 \\ \{A,B,C\}_4 \end{array}$

If $X \subset W$ & $support(X)/support(W) \geq C_{min}$, then $X \Rightarrow W - X$

Transactions

$$T_1$$
=(A,B,C)
 T_2 =(A,F)
 T_3 =(A,B,C,E)
 T_4 =(A,B,D,F)
 T_5 =(C,F)
 T_6 =(A,B,C,E)
 T_7 =(A,B,C,E)
 T_8 =(C,D,E)
 T_9 =(B,D,E)

Our frequent item contains

$$\begin{array}{l} \bullet \ \, \{A\}_6 \ \{B\}_6 \ \{C\}_6 \ \{E\}_4 \ \{A,B\}_5 \ \{A,C\}_4 \ \{B,C\}_4 \\ \{A,B,C\}_4 \end{array}$$

Possibilities are

$$A\Rightarrow B, B\Rightarrow A, A\Rightarrow C, C\Rightarrow A, , B\Rightarrow C, C\Rightarrow B, A\Rightarrow \{B,C\}, B\Rightarrow \{A,C\}, C\Rightarrow \{B,A\}, \{A,B\}\Rightarrow C, \{A,C\}\Rightarrow B, \{B,C\}\Rightarrow A$$

• Let's take $C_{min} = 1.22$

If $X \subset W$ & $support(X)/support(W) \geq C_{min}$, then $X \Rightarrow W - X$

Transactions

 $\begin{array}{l} T_1 = (A,B,C) \\ T_2 = (A,F) \\ T_3 = (A,B,C,E) \\ T_4 = (A,B,D,F) \\ T_5 = (C,F) \\ T_6 = (A,B,C) \\ T_7 = (A,B,C,E) \\ T_8 = (C,D,E) \\ T_9 = (B,D,E) \end{array}$

Our frequent item contains

$$\begin{array}{l} \bullet \ \, \{A\}_6 \ \{B\}_6 \ \{C\}_6 \ \{E\}_4 \ \{A,B\}_5 \ \{A,C\}_4 \ \{B,C\}_4 \\ \{A,B,C\}_4 \end{array}$$

Possibilities are

$$A\Rightarrow B, B\Rightarrow A, A\Rightarrow C, C\Rightarrow A, B\Rightarrow C, C\Rightarrow B, A\Rightarrow \{B,C\}, B\Rightarrow \{A,C\}, C\Rightarrow \{B,A\}, \{A,B\}\Rightarrow C, \{A,C\}\Rightarrow B, \{B,C\}\Rightarrow A$$

- Let's take $C_{min} = 1.22$
- Association rules that qualifies as valid rule are shown green

$$A\Rightarrow B, B\Rightarrow A, A\Rightarrow C, C\Rightarrow A, B\Rightarrow C, C\Rightarrow B, A\Rightarrow \{B,C\}, B\Rightarrow \{A,C\}, C\Rightarrow \{B,A\}, \{A,B\}\Rightarrow C, \{A,C\}\Rightarrow B, \{B,C\}\Rightarrow A$$

Thank You!

Thank you very much for your attention!

Queries ?