# SS-ZG548: ADVANCED DATA MINING





**Dr. Kamlesh Tiwari** Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Aug 21, 2021

ONLINE

(WILP @ BITS-Pilani July-Dec 2021)

《口》 《圖》 《圖》 《图》

- 2

http://ktiwari.in/adm

### Recap: Apriori at work

# Association Rule Mining involves the discovery of frequent item-sets based on **support** and **confidence** parameters



Approaches to discover Association Rules involves Apriori, Hash Based (DHP), Partition Based Algorithm

ADVANCED DATA MINING (SS-ZG548)

Dr Kamlesh Tiwari (BITS Pilani)

### Recap: incremental databases

Real databases could be dynamic. **Incremental** association rule mining is needed as

$$D' = D - \bigtriangleup^- + \bigtriangleup^+$$



# Recap: FUP<sup>1</sup> can handle insertions

Consider the database *D* and the related frequent set discovered with Apriori

| $T_1 = T_2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (A, B, C) $(A, F)$                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| $T_3 = T_4 = T_5 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (A, B, C, E)<br>(A, B, D, F)<br>(C, F) |
| $T_6 = T_7 = T_6 $ | (A, B, C)<br>(A, B, C, E)              |
| $T_{9} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (B, D, E)<br>(B, D, E)                 |

| Item set | Support |
|----------|---------|
| {A}      | 6/9     |
| {B}      | 6/9     |
| {C}      | 6/9     |
| {E}      | 4/9     |
| {A B}    | 5/9     |
| {A C}    | 4/9     |
| {BC}     | 4/9     |
| {ABC}    | 4/9     |

#### Consider the arrival of $\triangle^+$ more transactions



The first iteration, is as below.



<sup>1</sup> Maintenance of discovered association rules in large databases: An incremental updating technique, *DW Cheung, and J* Han, and V Ng, and CY Wong, International conference on data engineering, pp 106–114, IEEE:1996. a set a s

ADVANCED DATA MINING (SS-ZG548)

Dr Kamlesh Tiwari (BITS Pilani)

# Recap: FUP at work (contd...)

The second iteration, is as below.



Similarly it is executed for next levels.

ADVANCED DATA MINING (SS-ZG548)

Dr Kamlesh Tiwari (BITS Pilani)

# FUP<sub>2</sub>

- $\bullet~$  FUP2  $^2$  can work for both  $\bigtriangleup^-$  and  $\bigtriangleup^+$
- *L<sub>k</sub>* from previous mining result is used for dividing candidate itemset *C<sub>k</sub>* into two parts
  - $P_k = C_k \cap L_k$
  - $\triangleright \ \mathbf{Q}_k = \mathbf{C}_k \mathbf{P}_k$
- Itemset that is frequent in  $\triangle^-$ , must be infrequent in  $D^-$ .
- Further if itemset in  $Q_k$  in infrequent in  $\triangle^+$  then it is infrequent in  $D^-$ .
- This technique helps to effectively reduce number of candidate itemsets.

ADVANCED DATA MINING (SS-ZG548)

<sup>&</sup>lt;sup>2</sup>A general incremental technique for maintaining discovered association rules, *DW Cheung, SD Lee, and B Kao,* Database Systems For Advanced Applications, pp: 185–194, World Scientific-1997

### FUP<sub>2</sub> at work



- C<sub>1</sub> is set of all items. It is divided in P<sub>i</sub> and Q<sub>i</sub>
- Being frequent, support for all items in P<sub>i</sub> is known. It could be updated using △<sup>-</sup> and △<sup>+</sup> only.
- Count({A})<sub>D'</sub> = Count({A})<sub>D</sub> Count({A})<sub> $\Delta^-$ </sub> + Count({A})<sub> $\Delta^+</sub> = 6 3 + 1 = 4$ </sub>

< ロ > < 同 > < 回 > < 回 >

# FUP<sub>2</sub> at work

- In some cases only the scan of △<sup>-</sup> and △<sup>+</sup> is required.
- For example, Count({F})<sub>△+</sub> − Count({F})<sub>△−</sub> = 0 showing that support of {F} can not be improved.
- Consequently, fewer itemsets have to be further scanned
- An iteration finishes when all the itemsets in P<sub>i</sub> and Q<sub>i</sub> are verified, and new set of frequent itemsets L'<sub>i</sub> is generated

### FUP<sub>2</sub>H

Uses hashing for performance improvement

$$\Delta^{+} \begin{bmatrix} T_{1} = (A, B, C) \\ T_{2} = (A, F) \\ T_{3} = (A, B, C, E) \end{bmatrix} \Delta^{-}$$

$$\Delta^{-}$$

$$\Delta^{-}$$

$$\Delta^{-}$$

$$\Delta^{+} \begin{bmatrix} T_{4} = (A, B, C, E) \\ T_{5} = (C, F) \\ T_{6} = (A, B, C) \\ T_{7} = (A, B, C, E) \\ T_{9} = (B, D, E) \\ T_{11} = (D, F) \\ T_{12} = (A, B, C, D) \end{bmatrix} D^{\prime}$$

# Variations of FUP

- Update With Early Pruning (UWEP): Occurrence of potentially huge set of candidate itemset and multiple scans of the database is the issue
  - If a k-itemset is frequent in <sup>△+</sup> but infrequent in D', it is not considered when generating C<sub>k+1</sub>
  - This can significantly reduce the number of candidate itemsets, with the trade-off that an additional set of unchecked itemsets has to be maintained.
- Utilizing Negative Borders: Negative border set consists of all itemsets that are closest to be frequent
  - Negative border consists of all itemsets that were candidates of level-vise method but did not have enough support

$$Bd^{-}(L) = C_k - L_k$$

Find negative border set for

 $L = \{\{A\}, \{B\}, \{C\}, \{E\}, \{AB\}, \{AC\}, \{BC\}, \{ABC\}\}\}$ 

Full scan of dataset is only required when *itemsets outside negative* border set get added to frequent itemsets or negative border set.

### Law of large number

$$Prob(|\frac{x_1 + x_2 + x_3 + \dots + x_n}{n} - E(x)| \ge \epsilon) \le \frac{var(x)}{n\epsilon^2}$$

ADVANCED DATA MINING (SS-ZG548) Dr Kamlesh Tiwari (BITS Pilani)

э

< A >

- ∃ →

### Law of large number

$$Prob(|\frac{x_1 + x_2 + x_3 + \dots + x_n}{n} - E(x)| \ge \epsilon) \le \frac{var(x)}{n\epsilon^2}$$

#### Markov's inequality

When x be a non-negative random variable. Then for a > 0

$$Prob(x \ge a) \le rac{E(x)}{a}$$

A 35 A 4

### Law of large number

$$Prob(|\frac{x_1+x_2+x_3+\ldots+x_n}{n}-E(x)| \ge \epsilon) \le \frac{var(x)}{n\epsilon^2}$$

#### Markov's inequality

When x be a non-negative random variable. Then for a > 0

$$Prob(x \ge a) \le \frac{E(x)}{a}$$

#### Chebyshev's Inequality

Let *x* be a *random variable*. Then for c > 0

$$Prob(|x - E(x)| \ge c) \le \frac{Var(x)}{c^2}$$

ADVANCED DATA MINING (SS-ZG548)

# Variations of FUP

- Difference Estimation for Large Itemsets (DELI)<sup>3</sup>: Uses sampling technique
  - Estimate the difference between old and new frequent itemsets
  - Iff the difference is large, update operation using FUP<sub>2</sub> is performed
  - Let S be m transactions drawn from D<sup>−</sup> with replacement, then support of itemset X in D<sup>−</sup> is

$$\hat{\sigma_X} = \frac{T_x}{m} . |D^-|$$

where  $T_x$  is occurrence count of X in S. For large *m* we have  $100(1-\alpha)\%$  confidence interval  $[a_x, b_x]$  with

$$a_{x} = \hat{\sigma_{X}} - z_{a/2} \sqrt{\frac{\hat{\sigma_{X}}(|D^{-}| - \hat{\sigma_{X}})}{m}}$$
$$b_{x} = \hat{\sigma_{X}} + z_{a/2} \sqrt{\frac{\hat{\sigma_{X}}(|D^{-}| - \hat{\sigma_{X}})}{m}}$$

where  $z_{a/2}$  is a value such that the area beyond it in standard normal curve is exactly  $\alpha/2$ 

<sup>3</sup> Is sampling useful in data mining? a case in the maintenance of discovered association rules, *SD Lee, D Sau, DW Cheung, W David, and B Kao*, Data Mining and Knowledge Discovery, 2(3), pp 233–262, Springer=1998 *Provester and the set of t* 

ADVANCED DATA MINING (SS-ZG548)

# **Sliding Window Filtering**

### Partition-Based Algorithm for Incremental Mining:

If X is a frequent itemset in a database divided into partitions  $p_1, p_2, ..., p_n$  then X must be a frequent itemset in at least one of the partitions



- Uses threshold to generate candidate itemset
- Frequent itemset remains frequent from some  $P_k$  to  $P_n$
- A list of 2-itemsets CF is maintained to track possible frequent 2-itemsets.
- Locally frequent 2-itemsets of each partition is added (with its starting partition and supports)
- Scan reduction technique can make one database scan enough

### SWF at work

### With $S_{min} = 40\%$ generate frequent 2-itemsets



No new 2-itemset added when processing  $P_2$  since no extra frequent 2-itemsets. Moreover, the counts for itemsets {A,B}, {A,C} and {B,C} are all increased.

< ロ > < 同 > < 回 > < 回 >

## SWF at work

- Scan reduction technique is used to generate C<sub>k</sub> (k = 2, 3, ..., n) using C<sub>2</sub>
- C<sub>2</sub> is used to generate the candidate 3-itemsets and its sequential C'<sub>k1</sub> be utilized to generate C'<sub>k</sub>
- C'<sub>3</sub> generated from C<sub>2</sub> \* C<sub>2</sub> instead of L<sub>2</sub> \* L<sub>2</sub> will have size greater but near to |C<sub>3</sub>|
- Second scan would suffice for pruning

Merit of SWF lies in its incremental procedure. There are three sub-steps

- Generating  $C_2$  in  $D^- = db^{1,3} - \triangle^-$
- Generating  $C_2$  in  $db^{2,4} = D^- + \triangle^+$
- Scanning *db*<sup>2,4</sup> once



### Thank You!

# Thank you very much for your attention! Queries ?

Dr Kamlesh Tiwari (BITS Pilani)

Lecture-04 (Aug 21, 2021) 15/15

A (1) > A (2) > A (2)