SS-ZG548: ADVANCED DATA MINING

Frequent Items Count Distinct

Dr. Kamlesh Tiwari

Assistant Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Sept 11, 2021

ONLINE

(WILP @ BITS-Pilani July-Dec 2021)

http://ktiwari.in/adm

Recap: Data streams

Consider, stream of data. Where data in arriving in rapid succession. Re-scan is NOT possible. Even storage space is insufficient to accommodate all data points.

Without storing all the data one wish to estimate

- Set of frequent items
- Number of distinct items
- Frequent itemsets
- etc

from first *n* Natural numbers, without repetition, in an arbitrary order. Can you report the missing one?

[Constraints are on memory and processing power]

Frequent items over data stream

- Let identity of items is drawn from the set {1, 2, 3, ..., n}.
- Frequency of item i be f_i
- Assume general arrival model, (i, v), v > 0 represents arrival and v < 0 is departure.
- Sum of frequencies $m = \sum_{i} f_{i}$ represent size of data stream
- Frequent item *i*, have frequency $f_i > m/(k+1)$ for some fixed *k*

Observations

- There could be at most k frequent items (why ? proof?) m > k(k + 1)
- Any algorithm that finds all frequent and only frequent items requires at least $\log \binom{n}{k}$ bits (how? $2^s \geq \binom{n}{k}$)

Find approx frequent items

Wish to output a list of items such that

- Every item in the list has frequency $f_i > (1 \epsilon) \frac{m}{k+1}$
- ② All the items having frequency at least $(1 + \epsilon) \frac{m}{k+1}$ is in the list

Output should satisfy above two properties with probability $(1-\delta)$

Find approx frequent items

Wish to output a list of items such that

- Every item in the list has frequency $f_i > (1 \epsilon) \frac{m}{k+1}$
- 2 All the items having frequency at least $(1 + \epsilon) \frac{m}{k+1}$ is in the list

Output should satisfy above two properties with probability $(1 - \delta)$

Algorithm maintains a data structure A over the stream.

Step to update an item x is as below

- IF (A.ismember(x)) A[x]++
- **ELSE** A.insert(x)
- **③ IF** (A.size == k+1) **THEN** \forall *y* ∈ *A*
- **IF**(A[y] == 0) A.delete(y);

In action: Frequent items

Take k = 4, and consider following data stream

Insert x in data structure

- IF (A.ismember(x)) A[x]++
- ELSE A.insert(x)
- **3 IF** (A.size == k+1) **THEN** \forall $y \in A$
- **IF** (A[y] ==0) A.delete(y);

Let us step by step execute the algorithm:

Index	Item	Frequency
1		
2		
3		
4		
5		

Count distinct over data streams (FM sketch)

Estimate number of distinct items in data stream

- If $x = ???..??1 \ 000...0$ then L[x]=i
- Probability of L[x]=i is $p_i = \frac{2^{\log|F|-i}}{|F|} = 1/2^i$ when $x \in \{1, 2, ..., F\}$
- FM sketch is a bitmap A of size $\log |F|$ with hash a function h
- Arrival of an item x, sets bit $A[L[h(x)]] \leftarrow 1$. Probability that A[i] = 1 after seeing n items is $1 - (1 - p_i)^n$
- With s independent copies of FM sketch, let #A[i] represent count of 1's at level *i* and $\hat{q}_i = \frac{\#A[i]}{s}$. Then choose *i*, such that $\hat{q}_i \geq \frac{3}{\epsilon^2} \log \frac{1}{\delta}$. By Chernoff's bound $\hat{n} \in [(1-\epsilon)E[n], (1+\epsilon)E[n]]$ with probability $(1 - \delta)$

$$\hat{n} = \frac{\log(1 - \hat{q}_i)}{\log(1 - p_i)}$$


```
Stream: 25, 10,18,25,06,03,....
```

```
Stream: 25, 10, 18, 25, 06, 03, .... 10, 8, 2, 5, 18, 12, 9, 6, ....
```

```
Stream: 25, 10, 18, 25, 06, 03, ....  
10, 8, 2, 5, 18, 12, 9, 6, ....  
12, 6, 11, 15, 5, 6, 13, 6, 8, .... \rightarrow
```



```
Stream: 25, 10, 18, 25, 06, 03, .... 10, 8, 2, 5, 18, 12, 9, 6, .... 12, 6, 11, 15, 5, 6, 13, 6, 8, .... \rightarrow
```


$$\hat{q}_i = rac{\sum}{s}$$

$$\hat{n} = \frac{\log(1-\hat{q}_i)}{\log(1-p_i)}$$

 $\hat{n} \in [(1 - \epsilon)E[n], (1 + \epsilon)E[n]]$ with probability $(1 - \delta)$

Frequent pattern mining over data streams

- Applications involves retail market data analysis, network monitoring, web usage mining, and stock market prediction.
- Using sliding window
- Efficiently remove the obsolete, old stream data
- Compact Pattern Stream tree (CPS-tree)
- Highly compact frequency-descending tree structure at runtime
- Efficient in terms of memory and time complexity
- Pane and window
- Insertion and restructuring

Thank You!

Thank you very much for your attention!

Queries ?