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Local Search in Continuous State

Issue: Number of next states (branching factor) becomes infinite

Example: Induct three new airports in Romania
Let at (x1, y1), (x2, y2) and (x3, y3) on the map
Minimize sum of distances of all the cities from its nearest airport

f (x1, y1, x2, y2, x3, y3) =
3∑

i=1

∑
c∈Ci

((xi − xc)
2 + (yi − yc)

2)

If you discretize the neighborhood then there are only 12 next
state (move only ±δ in one step). One can apply hill climbing.
If you attempt to use gradient 5f = ( ∂f

∂x1
, ∂f
∂y1
, ∂f
∂x2
, ∂f
∂y2
, ∂f
∂x3
, ∂f
∂y3

) it
cannot be solved as globally finding 5f is not possible.
Given locally correct values of ∂f

∂x1
= 2

∑
c∈C1

(xi − xc) one can
perform steepest-ascent using x ← x + α5 f
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Search with Non-Deterministic Actions

Non-Deterministic: not sure what would be the next state1

Consider erratic vacuum world
sometime 1) also cleans neighboring room 2) deposit dirt

Transition would lead use to more
than one state
suck in 1, would lead {5,7}
Solution would have nested if-else

[suck, if state=5 then [right,suck else []]

Search tree would contain some OR
nodes and some AND nodes

1Percepts would tell where have we reached.
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AND-OR Search Tree

Solution
1 has goal node at

every leaf
2 takes one action

at each OR node
3 includes every

outcome branch
at each AND
node
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Searching with Partial Observations
When percepts do not suffice to pin down the exact state

Sensor less. consider [right,suck,left,suck ] guarantees to reach
in state 7 that is a goal state (traverses through belief states)
All possible belief states may not be reachable (only 12 out of 28)
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Online Search and Unknown Environment

Agent interleaves computation and action

Take action→ observe environment→ compute next action

Online Search is necessary for unknown environment

1 Consider following maze
problem

2 A robot need to go from S to G
3 Knows nothing about the

environment
Random-walk?

No algorithm can avoid dead-end in all state space
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Adversarial Search (game)

Agents having conflicting goals in competitive multiagent environment

Deterministic, fully-observable, turn-taking, two-player, zero-sum
Chess has roughly branching factor 35, moves 50 so tree search
space is 35100 = 10154 however, graph has 1040 nodes
Finding optimal move is infeasible but, needs an ability to decide

Game is between MAX and MIN (MAX moves first)
S0: the initial state
PLAYER(s): defines which player has move to start
ACTIONS(s): returns set of legal moves in a state
RESULT(s,a):termination model defining result of a move
TERMINAL TEST(s): is true when game is over
UTILITY(s,p): utility function defining reward (for chess +1,0,1/2)
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Game Tree for tic-tac-toe

The search tree of the game has less than 9! = 362880 nodes.

MAX must find a contingent strategy.

Analogous to AND-OR search (MAX plays OR and MIN plays AND)
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Two half moves is one ply

Given the game tree,
optimal strategy can
be determined from
minimax value of
each node.

MINIMAX(s) =


UTILITY (s) if TERMINAL TEST (s)
maxa∈Actions(s)MINIMAX(RESULT (s, a)) if PLAYER(s) = MAX
mina∈Actions(s)MINIMAX(RESULT (s, a)) if PLAYER(s) = MIN

Action a1 is the optimal choice 2

(essentially optimizing worst-case outcome for MAX)

2utility value for MAX of being in corresponding state (assuming then onwards both
player play optimally)
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MINIMAX Algorithm

Returns the action corresponding to best move

Recursion proceeds all the way down to the leaves.

Time complexity
O(bm) that is impractical but provides a basis of solution.
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ALPHA-BETA Pruning

Number of nodes to examine in minimax search is exponential in
the depth of tree O(bm).
Sometime we can make it O(bm/2) using alpha-beta pruning

When applied to standard minimax tree, it returns the same move
as minimax but, prunes away branches that cannot possibly
influence the decision.

Consider two unevaluated
successor of node C have value x
and y

MINIMAX(root)
= max( min(3,12,8), min(2,x,y), min(14,5,2))
= max( 3, min(2,x,y), 2)
= max( 3, z, 2) where z=min(2,x,y)≤ 2
= 3
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ALPHA-BETA Pruning

Alpha-beta pruning can be applied to trees of any depth, and it is
often possible to prune entire subtree rather than just leaves.

If m is better than n for player then
we would never go to n in play

α = value of best choice (high-
est) found so far for MAX

β = value of best choice (low-
est) found so far for MIN
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ALPHA-BETA Pruning

Order matters.
So, examine
likely to be
best
successor
first.

Is it possible?
No
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In-action: ALPHA-BETA Pruning
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Thank You!

Thank you very much for your attention!

Queries ?

(Reference3)

31) Book - AIMA, ch-04+05, Russell and Norvig.
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