IS-ZC444: ARTIFICIAL INTELLIGENCE Lecture-07: Beyond Classical Search #### Dr. Kamlesh Tiwari Assistant Professor Department of Computer Science and Information Systems, BITS Pilani, Pilani, Jhunjhunu-333031, Rajasthan, INDIA September 19, 2018 (WILP @ BITS-Pilani Jul-Nov 2018) Issue: Number of next states (branching factor) becomes infinite Issue: Number of next states (branching factor) becomes infinite #### **Example:** Induct three new airports in Romania - Let at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) on the map - Minimize sum of distances of all the cities from its nearest airport $$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} ((x_i - x_c)^2 + (y_i - y_c)^2)$$ Issue: Number of next states (branching factor) becomes infinite #### **Example:** Induct three new airports in Romania - Let at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) on the map - Minimize sum of distances of all the cities from its nearest airport $$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} ((x_i - x_c)^2 + (y_i - y_c)^2)$$ • If you discretize the neighborhood then there are only 12 next state (move only $\pm \delta$ in one step). One can apply hill climbing. Issue: Number of next states (branching factor) becomes infinite #### **Example:** Induct three new airports in Romania - Let at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) on the map - Minimize sum of distances of all the cities from its nearest airport $$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} ((x_i - x_c)^2 + (y_i - y_c)^2)$$ - If you discretize the neighborhood then there are only 12 next state (move only $\pm \delta$ in one step). One can apply hill climbing. - If you attempt to use gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3})$ it cannot be solved as globally finding ∇f is not possible. Issue: Number of next states (branching factor) becomes infinite #### **Example:** Induct three new airports in Romania - Let at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) on the map - Minimize sum of distances of all the cities from its nearest airport $$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} ((x_i - x_c)^2 + (y_i - y_c)^2)$$ - If you discretize the neighborhood then there are only 12 next state (move only $\pm \delta$ in one step). One can apply hill climbing. - If you attempt to use gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3})$ it cannot be solved as globally finding ∇f is not possible. - Given locally correct values of $\frac{\partial f}{\partial x_1} = 2 \sum_{c \in C_1} (x_i x_c)$ one can perform steepest-ascent using $x \leftarrow x + \alpha \bigtriangledown f$ Non-Deterministic: not sure what would be the next state¹ ¹Percepts would tell where have we reached. Non-Deterministic: not sure what would be the next state¹ Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt ¹Percepts would tell where have we reached. Non-Deterministic: not sure what would be the next state¹ Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt ¹Percepts would tell where have we reached. Non-Deterministic: not sure what would be the next state¹ Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt - Transition would lead use to more than one state - *suck* in 1, would lead {5,7} ¹Percepts would tell where have we reached. Non-Deterministic: not sure what would be the next state¹ Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt - Transition would lead use to more than one state - suck in 1, would lead {5,7} - Solution would have nested if-else [suck, if state=5 then [right, suck else []] ¹Percepts would tell where have we reached. Non-Deterministic: not sure what would be the next state¹ Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt - Transition would lead use to more than one state - *suck* in 1, would lead {5,7} - Solution would have nested if-else [suck, if state=5 then [right, suck else []] Search tree would contain some OR nodes and some AND nodes ¹Percepts would tell where have we reached. #### **AND-OR Search Tree** #### **AND-OR Search Tree** #### Solution - has goal node at every leaf - takes one action at each OR node - includes every outcome branch at each AND node #### Searching with Partial Observations When percepts do not suffice to pin down the exact state #### Searching with Partial Observations When percepts do not suffice to pin down the exact state • **Sensor less**. consider [right,suck,left,suck] guarantees to reach in state 7 that is a goal state (traverses through belief states) #### Searching with Partial Observations When percepts do not suffice to pin down the exact state - Sensor less. consider [right, suck, left, suck] guarantees to reach in state 7 that is a goal state (traverses through belief states) - All possible belief states may not be reachable (only 12 out of 28) Agent interleaves computation and action Agent interleaves computation and action Take action \rightarrow observe environment \rightarrow compute next action Agent interleaves computation and action Take action \rightarrow observe environment \rightarrow compute next action Online Search is necessary for unknown environment #### Agent interleaves computation and action Take action \rightarrow observe environment \rightarrow compute next action Online Search is necessary for unknown environment - Consider following maze problem - A robot need to go from S to G - Stroke in the servironment with the servironment in serviro Random-walk? #### Agent interleaves computation and action Take action \rightarrow observe environment \rightarrow compute next action Online Search is necessary for unknown environment - Consider following maze problem - A robot need to go from S to G - Shows nothing about the environment Random-walk? No algorithm can avoid dead-end in all state space Agents having conflicting goals in competitive multiagent environment Agents having conflicting goals in competitive multiagent environment Deterministic, fully-observable, turn-taking, two-player, zero-sum Agents having conflicting goals in competitive multiagent environment - Deterministic, fully-observable, turn-taking, two-player, zero-sum - Chess has roughly branching factor 35, moves 50 so tree search space is $35^{100} = 10^{154}$ however, graph has 10^{40} nodes - Finding optimal move is infeasible but, needs an ability to decide Agents having conflicting goals in competitive multiagent environment - Deterministic, fully-observable, turn-taking, two-player, zero-sum - Chess has roughly branching factor 35, moves 50 so tree search space is $35^{100} = 10^{154}$ however, graph has 10^{40} nodes - Finding optimal move is infeasible but, needs an ability to decide #### Game is between MAX and MIN (MAX moves first) - S₀: the initial state - PLAYER(s): defines which player has move to start - ACTIONS(s): returns set of legal moves in a state - RESULT(s, a):termination model defining result of a move - TERMINAL_TEST(s): is true when game is over - UTILITY(s, p): utility function defining reward (for chess +1,0,1/2) #### Game Tree for tic-tac-toe The search tree of the game has less than 9! = 362880 nodes. #### Game Tree for tic-tac-toe The search tree of the game has less than 9! = 362880 nodes. MAX must find a contingent **strategy**. Analogous to AND-OR search (MAX plays OR and MIN plays AND) #### Two half moves is one ply ²utility value for MAX of being in corresponding state (assuming then onwards both player play optimally) #### Two half moves is one ply Given the game tree, optimal strategy can be determined from **minimax value** of each node. ``` \textit{MINIMAX}(s) = \left\{ \begin{array}{l} \textit{UTILITY}(s) \\ \textit{max}_{a \in \textit{Actions}(s)} \textit{MINIMAX}(\textit{RESULT}(s, a)) \\ \textit{min}_{a \in \textit{Actions}(s)} \textit{MINIMAX}(\textit{RESULT}(s, a)) \end{array} \right. ``` if $TERMINAL_TEST(s)$ if PLAYER(s) = MAX if PLAYER(s) = MIN ²utility value for MAX of being in corresponding state (assuming then onwards both player play optimally) # Two half moves is one ply Given the game tree, optimal strategy can be determined from **minimax value** of each node. ``` \textit{MINIMAX}(s) = \left\{ \begin{array}{ll} \textit{UTILITY}(s) & \text{if } \textit{TERMINAL_TEST}(s) \\ \textit{max}_{a \in \textit{Actions}(s)} \textit{MINIMAX}(\textit{RESULT}(s, a)) & \text{if } \textit{PLAYER}(s) = \textit{MAX} \\ \textit{min}_{a \in \textit{Actions}(s)} \textit{MINIMAX}(\textit{RESULT}(s, a)) & \text{if } \textit{PLAYER}(s) = \textit{MIN} \\ \end{array} \right. ``` # Action a_1 is the optimal choice ² (essentially optimizing worst-case outcome for MAX) ²utility value for MAX of being in corresponding state (assuming then onwards both player play optimally) #### **MINIMAX Algorithm** #### Returns the action corresponding to best move ``` function MINIMAX-DECISION(state) returns an action return \arg \max_{a \in ACTIONS(s)} Min-Value(Result(state, a)) function MAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) v \leftarrow -\infty for each a in ACTIONS(state) do v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a))) return v function MIN-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) v \leftarrow \infty for each a in ACTIONS(state) do v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a))) return v ``` Recursion proceeds all the way down to the leaves. #### **MINIMAX Algorithm** #### Returns the action corresponding to best move ``` function MINIMAX-DECISION(state) returns an action return arg \max_{a \in ACTIONS(s)} MIN-VALUE(RESULT(state, a)) function MAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) v \leftarrow -\infty for each a in ACTIONS(state) do v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a))) return v function MIN-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) v \leftarrow \infty for each a in ACTIONS(state) do v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a))) return v ``` Recursion proceeds all the way down to the leaves. Time complexity $O(b^m)$ that is impractical but provides a basis of solution. - Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$. - Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning - Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$. - Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning - When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision. - Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$. - Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning - When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision. Consider two unevaluated successor of node C have value x and y - Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$. - Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning - When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision. Consider two unevaluated successor of node C have value x and y $\begin{aligned} & \mathsf{MINIMAX}(\mathsf{root}) \\ &= \mathsf{max}(\; \mathsf{min}(3,12,8), \; \mathsf{min}(2,x,y), \; \mathsf{min}(14,5,2)) \end{aligned}$ - Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$. - Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning - When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision. Consider two unevaluated successor of node C have value x and y #### MINIMAX(root) - $= \max(\min(3,12,8), \min(2,x,y), \min(14,5,2))$ - = max(3, min(2,x,y), 2) - Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$. - Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning - When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision. Consider two unevaluated successor of node C have value x and y #### MINIMAX(root) = max(min(3,12,8), min(2,x,y), min(14,5,2)) = max(3, min(2,x,y), 2) = max(3, z, 2) where z=min(2,x,v) < 2 - Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$. - Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning - When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision. Consider two unevaluated successor of node C have value x and y ``` \begin{array}{l} \text{MINIMAX(root)} \\ = \max(\; \min(3,12,8), \; \min(2,x,y), \; \min(14,5,2)) \\ = \max(\; 3, \; \min(2,x,y), \; 2) \\ = \max(\; 3, \; z, \; 2) \qquad \qquad \text{where } z = \min(2,x,y) \leq 2 \\ = \; 3 \end{array} ``` Alpha-beta pruning can be applied to trees of any depth, and it is often possible to prune entire subtree rather than just leaves. If m is better than n for player then we would never go to n in play | α | = | value of best choice (high- | |----------|---|-----------------------------| | | | est) found so far for MAX | | β | = | value of best choice (low- | | | | est) found so far for MIN | ``` function ALPHA-BETA-SEARCH(state) returns an action v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty) return the action in ACTIONS(state) with value v function MAX-VALUE(state, \alpha, \beta) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) v \leftarrow -\infty for each a in ACTIONS(state) do v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta)) if v \geq \beta then return v \alpha \leftarrow \text{MAX}(\alpha, v) return v function MIN-VALUE(state, \alpha, \beta) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) v \leftarrow +\infty for each a in ACTIONS(state) do v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta)) if v < \alpha then return v \beta \leftarrow MIN(\beta, v) return v ``` ``` function Alpha-Beta-Search(state) returns an action v \leftarrow \text{Max-Value}(state, -\infty, +\infty) return the action in Actions(state) with value v ``` ``` function MAX-VALUE(state, \alpha, \beta) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) v \leftarrow -\infty for each a in ACTIONS(state) do v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta)) if v \geq \beta then return v \alpha \leftarrow \text{MAX}(\alpha, v) return v ``` function MIN-VALUE($state, \alpha, \beta$) returns a utility value if TERMINAL-TEST(state) then return Utility(state) $v \leftarrow +\infty$ for each a in ACTIONS(state) do $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{Result}(s, a), \alpha, \beta))$ if $v \leq \alpha$ then return v $\beta \leftarrow \text{MIN}(\beta, v)$ return v Order matters. So, examine likely to be best successor first. if $v \geq \beta$ then return v $\alpha \leftarrow \text{MAX}(\alpha, v)$ return v ``` \begin{array}{l} \textbf{function} \ \, \text{ALPHA-BETA-SEARCH}(state) \ \, \textbf{returns} \ \, \textbf{an} \ \, \textbf{action} \\ v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty) \\ \textbf{return} \ \, \textbf{the} \ \, \textbf{action} \ \, \textbf{in} \ \, \textbf{ACTIONS}(state) \ \, \textbf{with} \ \, \textbf{value} \ \, v \\ \hline \, \textbf{function} \ \, \textbf{MAX-VALUE}(state, \alpha, \beta) \ \, \textbf{returns} \ \, \textbf{a} \ \, \textbf{utility} \ \, \textbf{value} \\ \textbf{if} \ \, \textbf{TERMINAL-TEST}(state) \ \, \textbf{then} \ \, \textbf{return} \ \, \textbf{UTILITY}(state) \\ v \leftarrow -\infty \\ \textbf{for} \ \, \textbf{each} \ \, \textbf{a} \ \, \textbf{in} \ \, \textbf{ACTIONS}(state) \ \, \textbf{do} \\ v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta)) \end{array} ``` Order matters. So, examine likely to be best successor first. $\begin{array}{l} \textbf{function Min-Value}(state,\alpha,\beta) \ \textbf{returns} \ a \ utility \ value \\ \textbf{if Terminal-Test}(state) \ \textbf{then return Utility}(state) \\ v \leftarrow +\infty \\ \textbf{for each } a \ \textbf{in Actions}(state) \ \textbf{do} \\ v \leftarrow \textbf{Min}(v, \textbf{Max-Value}(\textbf{Result}(s,a),\alpha,\beta)) \\ \textbf{if } v \leq \alpha \ \textbf{then return} \ v \\ \beta \leftarrow \textbf{Min}(\beta,v) \\ \textbf{return} \ v \\ \end{array}$ Is it possible? ``` \begin{array}{l} \textbf{function Min-Value}(state,\alpha,\beta) \ \textbf{returns} \ a \ utility \ value \\ \textbf{if Terminal-Test}(state) \ \textbf{then return Utility}(state) \\ v \leftarrow +\infty \\ \textbf{for each } a \ \textbf{in Actions}(state) \ \textbf{do} \\ v \leftarrow \textbf{Min}(v, \textbf{Max-Value}(\textbf{Result}(s,a),\alpha,\beta)) \\ \textbf{if } v \leq \alpha \ \textbf{then return} \ v \\ \beta \leftarrow \textbf{Min}(\beta,v) \\ \textbf{return} \ v \\ \end{array} ``` Order matters. So, examine likely to be best successor first. Is it possible? #### In-action: ALPHA-BETA Pruning #### Thank You! # Thank you very much for your attention! Queries ? (Reference³) ³1) Book - AIMA, ch-04+05, Russell and Norvig.