IS-ZC444: ARTIFICIAL INTELLIGENCE

Lecture-07: Beyond Classical Search

Dr. Kamlesh Tiwari Assistant Professor

Department of Computer Science and Information Systems, BITS Pilani, Pilani, Jhunjhunu-333031, Rajasthan, INDIA

September 19, 2018

(WILP @ BITS-Pilani Jul-Nov 2018)

Issue: Number of next states (branching factor) becomes infinite

Issue: Number of next states (branching factor) becomes infinite

Example: Induct three new airports in Romania

- Let at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) on the map
- Minimize sum of distances of all the cities from its nearest airport

$$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} ((x_i - x_c)^2 + (y_i - y_c)^2)$$

Issue: Number of next states (branching factor) becomes infinite

Example: Induct three new airports in Romania

- Let at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) on the map
- Minimize sum of distances of all the cities from its nearest airport

$$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} ((x_i - x_c)^2 + (y_i - y_c)^2)$$

• If you discretize the neighborhood then there are only 12 next state (move only $\pm \delta$ in one step). One can apply hill climbing.

Issue: Number of next states (branching factor) becomes infinite

Example: Induct three new airports in Romania

- Let at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) on the map
- Minimize sum of distances of all the cities from its nearest airport

$$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} ((x_i - x_c)^2 + (y_i - y_c)^2)$$

- If you discretize the neighborhood then there are only 12 next state (move only $\pm \delta$ in one step). One can apply hill climbing.
- If you attempt to use gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3})$ it cannot be solved as globally finding ∇f is not possible.

Issue: Number of next states (branching factor) becomes infinite

Example: Induct three new airports in Romania

- Let at (x_1, y_1) , (x_2, y_2) and (x_3, y_3) on the map
- Minimize sum of distances of all the cities from its nearest airport

$$f(x_1, y_1, x_2, y_2, x_3, y_3) = \sum_{i=1}^{3} \sum_{c \in C_i} ((x_i - x_c)^2 + (y_i - y_c)^2)$$

- If you discretize the neighborhood then there are only 12 next state (move only $\pm \delta$ in one step). One can apply hill climbing.
- If you attempt to use gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial x_2}, \frac{\partial f}{\partial y_2}, \frac{\partial f}{\partial x_3}, \frac{\partial f}{\partial y_3})$ it cannot be solved as globally finding ∇f is not possible.
- Given locally correct values of $\frac{\partial f}{\partial x_1} = 2 \sum_{c \in C_1} (x_i x_c)$ one can perform steepest-ascent using $x \leftarrow x + \alpha \bigtriangledown f$

Non-Deterministic: not sure what would be the next state¹

¹Percepts would tell where have we reached.

Non-Deterministic: not sure what would be the next state¹

Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt

¹Percepts would tell where have we reached.

Non-Deterministic: not sure what would be the next state¹

Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt

¹Percepts would tell where have we reached.

Non-Deterministic: not sure what would be the next state¹

Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt

- Transition would lead use to more than one state
- *suck* in 1, would lead {5,7}

¹Percepts would tell where have we reached.

Non-Deterministic: not sure what would be the next state¹

Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt

- Transition would lead use to more than one state
- suck in 1, would lead {5,7}
- Solution would have nested if-else

[suck, if state=5 then [right, suck else []]

¹Percepts would tell where have we reached.

Non-Deterministic: not sure what would be the next state¹

Consider erratic vacuum world sometime 1) also cleans neighboring room 2) deposit dirt

- Transition would lead use to more than one state
- *suck* in 1, would lead {5,7}
- Solution would have nested if-else

[suck, if state=5 then [right, suck else []]

Search tree would contain some OR nodes and some AND nodes

¹Percepts would tell where have we reached.

AND-OR Search Tree

AND-OR Search Tree

Solution

- has goal node at every leaf
- takes one action at each OR node
- includes every outcome branch at each AND node

Searching with Partial Observations

When percepts do not suffice to pin down the exact state

Searching with Partial Observations

When percepts do not suffice to pin down the exact state

• **Sensor less**. consider [right,suck,left,suck] guarantees to reach in state 7 that is a goal state (traverses through belief states)

Searching with Partial Observations

When percepts do not suffice to pin down the exact state

- Sensor less. consider [right, suck, left, suck] guarantees to reach in state 7 that is a goal state (traverses through belief states)
- All possible belief states may not be reachable (only 12 out of 28)

Agent interleaves computation and action

Agent interleaves computation and action

Take action \rightarrow observe environment \rightarrow compute next action

Agent interleaves computation and action

Take action \rightarrow observe environment \rightarrow compute next action

Online Search is necessary for unknown environment

Agent interleaves computation and action

Take action \rightarrow observe environment \rightarrow compute next action

Online Search is necessary for unknown environment

- Consider following maze problem
- A robot need to go from S to G
- Stroke in the servironment with the servironment in the serviro

Random-walk?

Agent interleaves computation and action

Take action \rightarrow observe environment \rightarrow compute next action

Online Search is necessary for unknown environment

- Consider following maze problem
- A robot need to go from S to G
- Shows nothing about the environment

Random-walk?

No algorithm can avoid dead-end in all state space

Agents having conflicting goals in competitive multiagent environment

Agents having conflicting goals in competitive multiagent environment

Deterministic, fully-observable, turn-taking, two-player, zero-sum

Agents having conflicting goals in competitive multiagent environment

- Deterministic, fully-observable, turn-taking, two-player, zero-sum
- Chess has roughly branching factor 35, moves 50 so tree search space is $35^{100} = 10^{154}$ however, graph has 10^{40} nodes
- Finding optimal move is infeasible but, needs an ability to decide

Agents having conflicting goals in competitive multiagent environment

- Deterministic, fully-observable, turn-taking, two-player, zero-sum
- Chess has roughly branching factor 35, moves 50 so tree search space is $35^{100} = 10^{154}$ however, graph has 10^{40} nodes
- Finding optimal move is infeasible but, needs an ability to decide

Game is between MAX and MIN (MAX moves first)

- S₀: the initial state
- PLAYER(s): defines which player has move to start
- ACTIONS(s): returns set of legal moves in a state
- RESULT(s, a):termination model defining result of a move
- TERMINAL_TEST(s): is true when game is over
- UTILITY(s, p): utility function defining reward (for chess +1,0,1/2)

Game Tree for tic-tac-toe

The search tree of the game has less than 9! = 362880 nodes.

Game Tree for tic-tac-toe

The search tree of the game has less than 9! = 362880 nodes.

MAX must find a contingent **strategy**.

Analogous to AND-OR search (MAX plays OR and MIN plays AND)

Two half moves is one ply

²utility value for MAX of being in corresponding state (assuming then onwards both player play optimally)

Two half moves is one ply

Given the game tree, optimal strategy can be determined from **minimax value** of each node.

```
\textit{MINIMAX}(s) = \left\{ \begin{array}{l} \textit{UTILITY}(s) \\ \textit{max}_{a \in \textit{Actions}(s)} \textit{MINIMAX}(\textit{RESULT}(s, a)) \\ \textit{min}_{a \in \textit{Actions}(s)} \textit{MINIMAX}(\textit{RESULT}(s, a)) \end{array} \right.
```

if $TERMINAL_TEST(s)$ if PLAYER(s) = MAX

if PLAYER(s) = MIN

²utility value for MAX of being in corresponding state (assuming then onwards both player play optimally)

Two half moves is one ply

Given the game tree, optimal strategy can be determined from **minimax value** of each node.

```
\textit{MINIMAX}(s) = \left\{ \begin{array}{ll} \textit{UTILITY}(s) & \text{if } \textit{TERMINAL\_TEST}(s) \\ \textit{max}_{a \in \textit{Actions}(s)} \textit{MINIMAX}(\textit{RESULT}(s, a)) & \text{if } \textit{PLAYER}(s) = \textit{MAX} \\ \textit{min}_{a \in \textit{Actions}(s)} \textit{MINIMAX}(\textit{RESULT}(s, a)) & \text{if } \textit{PLAYER}(s) = \textit{MIN} \\ \end{array} \right.
```

Action a_1 is the optimal choice ² (essentially optimizing worst-case outcome for MAX)

²utility value for MAX of being in corresponding state (assuming then onwards both player play optimally)

MINIMAX Algorithm

Returns the action corresponding to best move

```
function MINIMAX-DECISION(state) returns an action
   return \arg \max_{a \in ACTIONS(s)} Min-Value(Result(state, a))
function MAX-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow -\infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a)))
  return v
function MIN-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow \infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a)))
  return v
```

Recursion proceeds all the way down to the leaves.

MINIMAX Algorithm

Returns the action corresponding to best move

```
function MINIMAX-DECISION(state) returns an action
   return arg \max_{a \in ACTIONS(s)} MIN-VALUE(RESULT(state, a))
function MAX-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow -\infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a)))
  return v
function MIN-VALUE(state) returns a utility value
  if TERMINAL-TEST(state) then return UTILITY(state)
  v \leftarrow \infty
  for each a in ACTIONS(state) do
     v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a)))
  return v
```

Recursion proceeds all the way down to the leaves. Time complexity $O(b^m)$ that is impractical but provides a basis of solution.

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning
- When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision.

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning
- When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision.

Consider two unevaluated successor of node C have value x and y

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning
- When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision.

Consider two unevaluated successor of node C have value x and y

 $\begin{aligned} & \mathsf{MINIMAX}(\mathsf{root}) \\ &= \mathsf{max}(\; \mathsf{min}(3,12,8), \; \mathsf{min}(2,x,y), \; \mathsf{min}(14,5,2)) \end{aligned}$

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning
- When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision.

Consider two unevaluated successor of node C have value x and y

MINIMAX(root)

- $= \max(\min(3,12,8), \min(2,x,y), \min(14,5,2))$
- = max(3, min(2,x,y), 2)

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning
- When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision.

Consider two unevaluated successor of node C have value x and y

MINIMAX(root) = max(min(3,12,8), min(2,x,y), min(14,5,2)) = max(3, min(2,x,y), 2) = max(3, z, 2) where z=min(2,x,v) < 2

- Number of nodes to examine in minimax search is exponential in the depth of tree $O(b^m)$.
- Sometime we can make it $O(b^{m/2})$ using alpha-beta pruning
- When applied to standard minimax tree, it returns the same move as minimax but, prunes away branches that cannot possibly influence the decision.

Consider two unevaluated successor of node C have value x and y

```
\begin{array}{l} \text{MINIMAX(root)} \\ = \max( \; \min(3,12,8), \; \min(2,x,y), \; \min(14,5,2)) \\ = \max( \; 3, \; \min(2,x,y), \; 2) \\ = \max( \; 3, \; z, \; 2) \qquad \qquad \text{where } z = \min(2,x,y) \leq 2 \\ = \; 3 \end{array}
```

 Alpha-beta pruning can be applied to trees of any depth, and it is often possible to prune entire subtree rather than just leaves.

If m is better than n for player then we would never go to n in play

α	=	value of best choice (high-
		est) found so far for MAX
β	=	value of best choice (low-
		est) found so far for MIN

```
function ALPHA-BETA-SEARCH(state) returns an action
   v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty)
   return the action in ACTIONS(state) with value v
function MAX-VALUE(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow -\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
      if v \geq \beta then return v
      \alpha \leftarrow \text{MAX}(\alpha, v)
   return v
function MIN-VALUE(state, \alpha, \beta) returns a utility value
   if TERMINAL-TEST(state) then return UTILITY(state)
   v \leftarrow +\infty
   for each a in ACTIONS(state) do
      v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{RESULT}(s, a), \alpha, \beta))
      if v < \alpha then return v
      \beta \leftarrow MIN(\beta, v)
  return v
```

```
function Alpha-Beta-Search(state) returns an action v \leftarrow \text{Max-Value}(state, -\infty, +\infty) return the action in Actions(state) with value v
```

```
function MAX-VALUE(state, \alpha, \beta) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) v \leftarrow -\infty for each a in ACTIONS(state) do v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta)) if v \geq \beta then return v \alpha \leftarrow \text{MAX}(\alpha, v) return v
```

function MIN-VALUE($state, \alpha, \beta$) returns a utility value if TERMINAL-TEST(state) then return Utility(state) $v \leftarrow +\infty$ for each a in ACTIONS(state) do $v \leftarrow \text{MIN}(v, \text{MAX-VALUE}(\text{Result}(s, a), \alpha, \beta))$ if $v \leq \alpha$ then return v $\beta \leftarrow \text{MIN}(\beta, v)$ return v

Order matters. So, examine likely to be best successor first.

if $v \geq \beta$ then return v

 $\alpha \leftarrow \text{MAX}(\alpha, v)$

return v

```
\begin{array}{l} \textbf{function} \  \, \text{ALPHA-BETA-SEARCH}(state) \  \, \textbf{returns} \  \, \textbf{an} \  \, \textbf{action} \\ v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty) \\ \textbf{return} \  \, \textbf{the} \  \, \textbf{action} \  \, \textbf{in} \  \, \textbf{ACTIONS}(state) \  \, \textbf{with} \  \, \textbf{value} \  \, v \\ \hline  \, \textbf{function} \  \, \textbf{MAX-VALUE}(state, \alpha, \beta) \  \, \textbf{returns} \  \, \textbf{a} \  \, \textbf{utility} \  \, \textbf{value} \\ \textbf{if} \  \, \textbf{TERMINAL-TEST}(state) \  \, \textbf{then} \  \, \textbf{return} \  \, \textbf{UTILITY}(state) \\ v \leftarrow -\infty \\ \textbf{for} \  \, \textbf{each} \  \, \textbf{a} \  \, \textbf{in} \  \, \textbf{ACTIONS}(state) \  \, \textbf{do} \\ v \leftarrow \text{MAX}(v, \text{MIN-VALUE}(\text{RESULT}(s, a), \alpha, \beta)) \end{array}
```

Order matters. So, examine likely to be best successor first.

 $\begin{array}{l} \textbf{function Min-Value}(state,\alpha,\beta) \ \textbf{returns} \ a \ utility \ value \\ \textbf{if Terminal-Test}(state) \ \textbf{then return Utility}(state) \\ v \leftarrow +\infty \\ \textbf{for each } a \ \textbf{in Actions}(state) \ \textbf{do} \\ v \leftarrow \textbf{Min}(v, \textbf{Max-Value}(\textbf{Result}(s,a),\alpha,\beta)) \\ \textbf{if } v \leq \alpha \ \textbf{then return} \ v \\ \beta \leftarrow \textbf{Min}(\beta,v) \\ \textbf{return} \ v \\ \end{array}$

Is it possible?

```
 \begin{array}{l} \textbf{function Min-Value}(state,\alpha,\beta) \ \textbf{returns} \ a \ utility \ value \\ \textbf{if Terminal-Test}(state) \ \textbf{then return Utility}(state) \\ v \leftarrow +\infty \\ \textbf{for each } a \ \textbf{in Actions}(state) \ \textbf{do} \\ v \leftarrow \textbf{Min}(v, \textbf{Max-Value}(\textbf{Result}(s,a),\alpha,\beta)) \\ \textbf{if } v \leq \alpha \ \textbf{then return} \ v \\ \beta \leftarrow \textbf{Min}(\beta,v) \\ \textbf{return} \ v \\ \end{array}
```

Order matters. So, examine likely to be best successor first.

Is it possible?

In-action: ALPHA-BETA Pruning

Thank You!

Thank you very much for your attention! Queries ?

(Reference³)

³1) Book - AIMA, ch-04+05, Russell and Norvig.