

Recap: First Order Logic (Predicate Logic)

Backus-Naur Form (BNF)

There is a rule (syntax) to form sentences

\rightarrow	$AtomicSentence \mid \ ComplexSentence$
\rightarrow	$True \mid False \mid P \mid Q \mid R \mid \dots$
\rightarrow	(Sentence) [Sentence]
1	\neg Sentence
	Sentence \land Sentence
1	$Sentence \lor Sentence$
	$Sentence \Rightarrow Sentence$
1	$Sentence \Leftrightarrow Sentence$
:	$\neg, \land, \lor, \Rightarrow, \Leftrightarrow$
	$\begin{array}{c} \rightarrow \\ \rightarrow \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$

Rules for Disjunction

(D) (B) (E) (E)

Show $p \lor q \vdash q \lor p$

1.	$p \lor q$	Premise
2.	р	Assumption
3.	$oldsymbol{q} ee oldsymbol{p}$	$\vee i_2$
4.	q	Assumption
5.	$q \lor p$	$\vee i_1$
6.	$oldsymbol{q} ee oldsymbol{p}$	∨ <i>e</i> 1, 3, 5

• Show $q \rightarrow r \vdash p \lor q \rightarrow p \lor r$ cial Intelligence (ZC444) Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 4/28

Rules for Negation

@BITS-Pilani

Lecture-12 (Oct 29, 2023) 3/28

Show $\neg p \lor q \vdash p \rightarrow q$

1.	$\neg p \lor q$							
2.	$\neg p$	Premise	q	Premise				
З.	p	Assumption	p	Assumption				
4.	\perp	<i>¬e</i> 3,2	q	Copy 2				
5.	q	⊥ <i>e</i> 4	p ightarrow q	ightarrow i 3,4				
6.	p ightarrow q	ightarrow <i>i</i> 3,5						
7.	p ightarrow q		∨ <i>e</i> 1,2-6					

• Show $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$ rtificial Intelligence (ZC444) Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 5/28

Logical Equivalences

$(\alpha \wedge \beta)$	=	$(\beta \wedge \alpha)$	Commutativity of \land
$(\alpha \lor \beta)$	=	$(\beta \lor \alpha)$	Commutativity of \lor
$(\alpha \wedge \beta) \wedge \gamma$	=	$\alpha \wedge (\beta \wedge \gamma)$	Associativity of \land
$(\alpha \lor \beta) \lor \gamma$	=	$\alpha \vee (\beta \vee \gamma)$	Associativity of \lor
$\neg \neg \alpha$	=	α	Double negation elimination
$\alpha \rightarrow \beta$	=	$\neg\beta \to \neg\alpha$	Contraposition
$\alpha \rightarrow \beta$	=	$\neg \alpha \lor \beta$	Implication Elimination
$\alpha \leftrightarrow \beta$	=	$(\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$	Biconditional Elimination
$\neg(\alpha \land \beta)$	=	$\neg \alpha \vee \neg \beta$	De Morgen
$\neg(\alpha \lor \beta)$	=	$\neg \alpha \land \neg \beta$	De Morgen
$\alpha \wedge (\beta \vee \gamma)$	=	$(\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$	Distribution of \wedge on \vee
$\alpha \vee (\beta \wedge \gamma)$	=	$(\alpha \lor \beta) \land (\alpha \lor \gamma)$	Distribution of \lor on \land

@BITS-Pilani Lecture-12 (Oct 29, 2023) 6/28 ce (ZC444)

Soundness and Completeness

- Soundness: doing right
- Completeness: full coverage
- There are 10 defective bulbs in a box of 25.
 - Mr. A gives me 10 bulbs none of them is defective
 - Mr. B gives me 20 bulbs; 5 of them is defective

A is sound B is complete

Evaluate a legal system "guilty until proven innocent" and "innocent until proven guilty"

Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 7/28

What we want? both.

Artificial Intelligence (ZC444)

CNF, IMPL_FREE and NNF

Conjunctive normal form¹, implication free² and negative normal form³

Find CNF(NNF(IMPL_FREE(A))) Where $A = \neg p \land q \rightarrow p \land (r \rightarrow q)$

 $\begin{array}{c} \neg(\neg p \land q) \lor (p \land (\neg r \lor q)) \\ (p \lor \neg q) \lor (p \land (\neg r \lor q)) \\ (p \lor \neg q \lor p) \lor (p \land \neg q \land \neg r \lor q) \end{array}$

Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 8/28

 $^{1}\text{everything}$ is conjunctions of disjunction $^{2}\text{no}\rightarrow$

³no double negation

Horn Clause **Recall Wumpus World** Formula that can be generated by H • Performance gold +100, death Stenchs Breeze P ::= $\perp \mid \top \mid p \mid q \mid r \mid ...$ 4 PIT -100, step -1, arrow -10 $A ::= P | P \land A$ • Environment smell around (PIT C ::= $A \rightarrow P$ wumpus, breeze around pit $H ::= C | C \wedge H$ (1) Actuator turn left/right, forward, Stench Breeze 2 grab, release, shoot Satisfiability • Sensor breeze, glitter, smell, PIT Brogz It marks ⊤ if it occurs in that list. If there is a conjunct P₁ ∧ P₂ ∧ · · · ∧ P_{ki} → P' of φ such that all P_j with 1 ≤ j ≤ k_i are marked, mark P' as well and go to 2. Otherwise (= there is no conjund P₁ ∧ P₂ ∧ · · · ∧ P_{ki} → P' such that all P_j are marked) go to 3. If ⊥ is marked, print out 'The Horn formula φ is unsatisfiable.' and stop. Otherwise we to 4 bump, scream Single Agent, Deterministic, Static, Discrete, !Observable & !Episodic erwise, go to 4 • $B_{x,y}$ if breeze is in [x, y]4. Print out 'The Horn formula ϕ is satisfiable.' and stop. • $P_{x,y}$ if there is a pit in [x, y]• $S_{x,y}$ if stench is in [x, y]• $W_{x,y}$ if wumpus is in [x, y](a) $(p \land q \land w \rightarrow 1) \land ((r \rightarrow 1) \land (r \rightarrow p) \land (T \rightarrow r) \land (T \rightarrow q) \land (u \rightarrow s) \land (T \rightarrow u)$ (b) $(p \land q \land w \rightarrow 1) \land ((r \rightarrow 1) \land (r \rightarrow p) \land (T \rightarrow r) \land (T \rightarrow q) \land (r \land u \rightarrow w) \land (u \rightarrow s) \land (T \rightarrow u)$ (c) $(p \land q \land s \rightarrow p) \land (q \land r \rightarrow p) \land (q \land r \rightarrow q) \land (q \land s \rightarrow 1)$ (d) $(p \land q \land s \rightarrow 1) \land (q \land r \rightarrow p) \land (T \rightarrow s)$ (e) $(p \land q \land s \rightarrow 1) \land (q \land r \rightarrow p) \land (T \rightarrow s)$ (f) $(T \rightarrow q) \land (T \rightarrow s) \land (w \rightarrow 1) \land (p \land q \land s \rightarrow 1) \land (v \rightarrow s) \land (T \rightarrow r) \land (r \rightarrow p)$ We know $R_1: \neg P_{1,1}, R_2: B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}),$ $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1}), R_4: \neg B_{1,1}, R_5: B_{2,1}$ al Intelligence (ZC444) Sun (10:30-12: @BITS-Pilani Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 9/28 Lecture-12 (Oct 29, 2023) 10/28 ce (ZC444)

Model Checking for Inference

• Seven symbols $P_{1,1}$, $B_{1,1}$, $P_{1,2}$, $P_{2,1}$, $B_{2,1}$, $P_{2,2}$, $P_{3,1}$ have $2^7 = 128$ models. In three of these knowledge base is true.

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	fclse	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	false	true	true	true	true	true	<u>true</u>
false	true	false	false	false	true	true	true	true	true	true	true	<u>true</u>
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

In all those three $\neg P_{1,2}$ is true, hence there is no pit in [1,2]. On the other hand $P_{2,2}$ is true on two and false in one so it is not confirmed whether there is pit in [2,2] or not.

tificial Intelligence (ZC444) Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 11/28

Validity and Satisfiability

• Validity: sentence is true in all models (tautologies)

$$\begin{array}{c} A \lor \neg A \\ A \lor B \to A \lor B \end{array}$$

• Satisfiability: sentence is true in some models

$$A \lor \neg B$$

 $A \to B$

Determine whether following sentence is valid or satisfiable

$$((A \land B) \to C) \leftrightarrow (A \to (B \to C))$$

Forward Chaining

Determines if a single proposition symbol q is entailed by the knowledge? (data driven reasoning)

- It begins from known facts and adds conclusions of the implication whose all the premises are known
- for $L_{1,1} \wedge breeze \to B_{1,1}$ if we know $L_{1,1}$ and breeze then $B_{1,1}$ is added in knowledge base 4

Backward Chaining

- Works backward from query
- If query Q is known to be true, then no work is needed.
- Otherwise, find those implications whose conclusion is Q
- If all the premises of one of those implications can be proven true (by backward chaining) then *Q* is true
- $P \Rightarrow Q$ $L \land M \Rightarrow P$ $B \land L \Rightarrow M$ $A \land P \Rightarrow L$ $A \land B \Rightarrow L$ A B
- test(Q) is it true ?
 test(P) is it true ?
- test($L \wedge M$) ?
- ((test(A ∧ B) or test(A ∧ P)) and test(B ∧ L) ? we know A and B so we have L this gives M
- Therefore P and hence Q

Artificial Intelligence (ZC444) Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 14/28

First Order Logic (Predicate Logic)

- We have constants, variables, predicates and functions
- Here P(x) could means $\forall x$ we have P(x) or $\exists x$ such that P(x)
- Variable *x* has a domain from where it gets values
- $\forall x, \exists y P(x, y)$ is not always same as $\exists y, \forall x P(x, y)$
- $\bullet~$ When we say $\exists~a~predicate~then~it~is~higher~order~logic$

Examples

Not every customer have purchased milk and bread

 $\exists c \ Cust(c) \land [\neg shop(milk, c) \lor \neg shop(bread, c)]$

Only one customer have purchased guitar

 $\exists x \ [Cust(x) \land shop(G, x) \land \forall y [\neg(x = y) \land Cust(y) \Rightarrow \neg shop(G, y)]]$

- Only one customer have purchased guitar and pen
- Highest purchase in forenoon is more than afternoon.

Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 15/28

Inference in First Order Logic

- Universal Elimination ∀*x* Feels(*x*, *king*) could be Feels(Raju, *king*) substitution {*x*/Raju} is done using some ground term.
- Existential Elimination $\exists x \ Feels(x, king)$ could be *Feels(man, king)* if *man* does not appear in knowledge base ⁵
- Existential Introduction If Feels(Raju, king) then we can say $\exists x \; Feels(x, king)$
- It is crime for Magadh to sell formula to a hostile country

Sun (10:30-12:00PM) on

Ocuntry Bhind, an enemy of Magadh have purchased some formula from Dara

@BITS-Pilani

Lecture-12 (Oct 29, 2023) 16/28

Lecture-12 (Oct 29, 2023) 18/28

- Oara is from Magadh
- Question: Is Dara a criminal?

ce (ZC444)

⁵ man is a name of person who feels like king

Prolog

- A logic programming language ⁶
- Compile as ['a.pl'].

Artificial Intelligence (ZC444)

If :- and , or ; not not

⁶http://www.swi-prolog.org/

write('hello'), nl
 warm.blood(penguin).
 produce.milk(penguin).
 produce.milk(penguin).
 produce.milk(penguin).
 have.barl(numan).
 marmal(X) :
 warm.blood(X),
 produce.milk(X).
 is.even(X).
 is.even(X).
 write('what is your name'), read(X), write('Hi'), write(X).
 Many more things are possible

Machine Learning

For some problems we don't precisely know either 1) how to solve, or 2) difficult to specify solution procedure

Then we go for Machine Learning (ML)

 < □→ (♂)→ (≥)→ (≥)→ ≥</td>

 </t

Machine Learning: Tasks

Two broad categories of machine learning models are *Predictive* and *Descriptive*. Some of the related tasks are

Types of Learning

- **Supervised:** "right answers" are provided for sufficient training examples. Computer tells "right answers" for new input. Performance measure. (Classification and regression)
- **Unsupervised:** "right answers" are NOT provided and the computer tries to make sense of the data. How good the spread of items is. (clustering and association rule)
- Semi-supervised: "right answers" are provided for few training examples only
- Active: computer can ask questions. Needs less training. Opposite is passive learning
- Lazy: learner do not consolidate the findings.
- Reinforced: hit and trial method to minimize cost. (game playing)

Artificial Intelligence (ZC444) Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 20 / 28

- Transfer: Learning a task B to do A. (cycle riding for bike riding)
- Deep: processing like human brain

Applications of ML

In many domains including finance, robotics, bioinformatics, vision, natural language, *etc.*

- Spam filtering
- Speech/handwriting recognition
- Object detection/recognition
- Weather prediction
- Stock market analysis
- Search engines (e.g, Google)
- Ad placement on websites
- Adaptive website design
- Credit-card fraud detection
- Webpage clustering (e.g.,Google News)

- Machine Translation (e.g., Google Translate)
- Recommendation systems (e.g., Netflix, Amazon)
- Classifying DNA sequences
- Automatic vehicle navigationPerformance tuning of computer
- systemsPredicting good compilation
- flags for programs

 .. and many more

 Artificial Intelligence (ZC444)
 Sun (10:30-12:00PM) online@BITS-Pilani
 Lecture-12 (Oct 29, 2023)
 21/28

Probability of observing a dataset

Assume you are flipping a biased coin where p(H) = 0.4. What is the probability that you see this dataset $D = \langle H, H, T, T, H, H \rangle$

- p(H) = 0.4
- p(T) = 1 p(H) = 1 0.4 = 0.6
- If all the trails are independent then $\rho(D|\theta)$

$$= p(H) \times p(H) \times p(T) \times p(T) \times p(H) \times p(H)$$

 $= 0.4^4 \times 0.6^2 = 0.009216$

Note: Order of elements in the data set do not matter in the trial. So p(< H, H, H, H, T, T >) is same (in fact any other permutation)

What is θ

It is the parameter. For our case it represents p(H) = 0.4

Artificial Intelligence (ZC444) Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 23/28

Hypothesis

X	Y	$ h_1 $	$ h_2 $	
10	0	0	1	
11	0	0	0	
12	0	0	1	
13	1	1	0	
14	0	1	1	
15	1	1	0	
16	0	1	1	
17	1	1	0	
18	1	1	1	

- In this example h_1, h_2, \dots are hypothesis.
- Hypothesis is a function that aims to provide value of the Y
- Can you identify h_1 and h_2
- Represent *H* as candidate set of hypothesis, $i.e.h_i \in H$
- Size of *H* is at least 2^{*m*}

Bayesian Learning

It is based on assumption that quantities of interest are governed by probability distribution

- Notation
 - P(h): initial probability that hypothesis h holds
 - P(D): probability that data D will be observed
 - P(D|h): probability of observing data D given some world in which hypothesis h holds
 - P(h|D): probability of holding hypothesis h when data D is observed

$$P(h|D) = \frac{P(D|h)P(h)}{P(D)}$$

Artificial Intelligence (ZC444) Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 25/28

Maximum a posteriori (MAP)

• Choose a hypothesis that maximizes P(h|D)

-

$$h_{MAP} = \operatorname{argmax}_{h \in H} P(h|D)$$
$$= \operatorname{argmax}_{h \in H} \frac{P(D|h)P(h)}{P(D)}$$

$$= \operatorname{argmax}_{h \in H} P(D|h)P(h)$$
(2)

- Because P(D) is independent of h
- If all the hypothesis are equally probable, we may further simplify called maximum likelihood (ML)

Artificial Intelligence (ZC444) Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 26/28

$$h_{ML} = \arg\max_{h \in H} P(D|h)$$
(3)

For our current example

• Let bias for h_1 and h_2 be 2/50 and 6/50

- probability 7/9 and 3/9 respectively
- So MAP hypothesis corresponds to?
- provides a hypothesis that commits zero error

Artificial Intelligence (ZC444) Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 27/28

Thank You!

Thank you very much for your attention!

Queries ?

(Reference⁷)

⁷1) Book - AIMA, ch-07/08, Russell and Norvig. 2) Book - Logic in CS, ch-01/02, Mitchel Huth and Mark Ryan. Sun (10:30-12:00PM) online@BITS-Pilani Lecture-12 (Oct 29, 2023) 28 / 28