IS/SE/SS ZC444: Artificial Intelligence

Dr. Kamlesh Tiwari
Associate Professor, Department of CSIS,
BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA
Oct 29, 2023
ONLINE WILP @ BITS-Pilani [July-Dec 2023]
http://ktiwari.in/ai

Backus-Naur Form (BNF)

There is a rule (syntax) to form sentences

Sentence	\rightarrow AtomicSentence \mid ComplexSentence
AtomicSentence	\rightarrow True \mid False $\|P\| Q\|R\| \ldots$
ComplexSentence	$\rightarrow($ Sentence $) \mid[$ Sentence $]$
	\neg Sentence
	Sentence \wedge Sentence
	Sentence \vee Sentence
	Sentence \Rightarrow Sentence
	Sentence \Leftrightarrow Sentence
OPERATOR PRECEDENCE	$: \neg, \wedge, \vee, \Rightarrow, \Leftrightarrow$

Rules for Negation

Show $\neg p \vee q \vdash p \rightarrow q$

[^0]
Soundness and Completeness

- Soundness: doing right
- Completeness: full coverage

There are 10 defective bulbs in a box of 25 .

- Mr. A gives me 10 bulbs none of them is defective
- Mr. B gives me 20 bulbs; 5 of them is defective
A is sound
B is complete

Evaluate a legal system "guilty until proven innocent" and "innocent until proven guilty"

What we want? both.

Horn Clause

Formula that can be generated by H

$$
\begin{align*}
& P::=\perp|T| p|q| r \mid \ldots \\
& A::=P \mid P \wedge A \\
& C::=A \rightarrow P \\
& H::=C \mid C \wedge H \tag{1}
\end{align*}
$$

Satisfiability

1. It marks T if it occurs in that list.
2. If there is a conjunct $P_{1} \wedge P_{2} \wedge \cdots \wedge P_{k_{i}} \rightarrow P^{\prime}$ of ϕ such that all P_{j} with $1 \leq j \leq$
k_{i} are marked, mark P^{\prime} as well and go to 2 . Otherwise ($=$ there is no conjunct
$P_{1} \wedge P_{2} \wedge \cdots \wedge P_{k_{i}} \rightarrow P^{\prime}$ such that all P_{j} are marked) go to 3 .
3. If \perp is marked, print out 'The Horn formula ϕ is unsatisfiable.' and stop. Otherwise, go to 4.
4. Print out 'The Horn formula ϕ is satisfiable.' and stop.
(b) $(p \wedge \wedge \wedge \wedge \rightarrow \rightarrow) \wedge(t \rightarrow \perp) \wedge(r \rightarrow p) \wedge(T \rightarrow r) \wedge(T \rightarrow q) \wedge(u \rightarrow s) \wedge(T \rightarrow u)$
(b) $p \wedge \wedge \rightarrow \perp) \wedge(t \rightarrow \perp) \wedge(r \rightarrow p) \wedge(T \rightarrow r) \wedge(T \rightarrow q) \wedge(\tau \wedge u \rightarrow w) \wedge(u \rightarrow s) \wedge(T \rightarrow u)$
(b) $(p \wedge \wedge \wedge w \rightarrow 1) \wedge(t \rightarrow 1) \wedge(\rightarrow p) \wedge(T-r)$
(c) $(\wedge \wedge \cap \wedge s \rightarrow p) \wedge(A \wedge r \rightarrow p) \wedge(p) \wedge s \rightarrow s)$
(d) $(p \wedge q \wedge s \rightarrow 1) \wedge(q \wedge r \rightarrow p) \wedge(T \rightarrow s)$
$(e)\left(p_{5} \rightarrow p_{1}\right) \wedge\left(p_{p} \wedge\left(p \wedge \wedge \wedge p_{5} \rightarrow p p_{3}\right) \wedge(T) \rightarrow p_{5}\right) \wedge\left(p_{5} \wedge p_{1} \rightarrow \perp\right)$
$(f)(T \rightarrow q) \wedge(T \rightarrow s) \wedge(w \rightarrow) \wedge(p) q \wedge)$

Model Checking for Inference

- Seven symbols $P_{1,1}, B_{1,1}, P_{1,2}, P_{2,1}, B_{2,1}, P_{2,2}, P_{3,1}$ have $2^{7}=128$ models. In three of these knowledge base is true.

B_{1}	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	P,	R_{1}	R_{2}	R_{3}	$\mathrm{R}^{\text {d }}$	R_{5}	$K B$
$\begin{array}{\|l} \hline \text { false } \\ \text { false } \end{array}$	false false	false false	$\begin{aligned} & \text { false } \\ & \text { false } \end{aligned}$	false false	$\begin{aligned} & \text { false } \\ & \text { false } \end{aligned}$	false true	$\begin{aligned} & \text { true } \\ & \text { true } \end{aligned}$	$\begin{aligned} & \text { true } \\ & \text { true } \end{aligned}$	lse	$\begin{aligned} & \text { true } \\ & \text { true } \end{aligned}$	$\begin{aligned} & \text { false } \\ & \text { false } \end{aligned}$	false false
false	true	$\begin{gathered} \vdots \\ \text { false } \end{gathered}$	false	false	false	false	true	true	$\begin{gathered} \vdots \\ \text { false } \end{gathered}$	true	true	false
$\begin{aligned} & \text { false } \\ & \text { false } \\ & \text { false } \end{aligned}$	true true	$\begin{aligned} & \text { false } \\ & \text { false } \end{aligned}$	$\begin{aligned} & \text { false } \\ & \text { false } \\ & \text { false } \end{aligned}$	$\begin{aligned} & \text { false } \\ & \text { false } \end{aligned}$	false true true	true false true	true true	true true	$\begin{aligned} & \text { true } \\ & \text { true } \end{aligned}$	true true	true	$\begin{aligned} & \text { rue } \\ & \text { rue } \end{aligned}$
false $\begin{gathered} \vdots \\ \text { true } \end{gathered}$	true true	$\begin{gathered} \text { false } \\ \vdots \\ \text { true } \end{gathered}$	false true		false : true	false true	true false	false \vdots true	false true	true false	true true	false false

In all those three $\neg P_{1,2}$ is true, hence there is no pit in [1,2]. On the other hand $P_{2,2}$ is true on two and false in one so it is not confirmed whether there is pit in [2,2] or not.

CNF, IMPL_FREE and NNF

Conjunctive normal form ${ }^{1}$, implication free ${ }^{2}$ and negative normal form ${ }^{3}$
Find CNF (NNF (IMPL_FREE $(A))$)
Where $A=\neg p \wedge q \rightarrow p \wedge(r \rightarrow q)$

$$
\begin{gathered}
\neg(\neg p \wedge q) \vee(p \wedge(\neg r \vee q)) \\
(p \vee \neg q) \vee(p \wedge(\neg r \vee q)) \\
(p \vee \neg q \vee p) \vee(p \wedge \neg q \wedge \neg r \vee q)
\end{gathered}
$$

[^1]
Recall Wumpus World

- Performance gold +100 , death -100, step -1, arrow -10
- Environment smell around wumpus, breeze around pit
- Actuator turn left/right, forward, grab, release, shoot
- Sensor breeze, glitter, smell, bump, scream

Single Agent, Deterministic, Static, Discrete, !Observable \& !Episodic

- $P_{x, y}$ if there is a pit in $[x, y] \quad$ - $B_{x, y}$ if breeze is in $[x, y]$
- $W_{x, y}$ if wumpus is in $[x, y] \quad \bullet S_{x, y}$ if stench is in $[x, y]$

We know $R_{1}: \neg P_{1,1}, \quad R_{2}: B_{1,1} \Leftrightarrow\left(P_{1,2} \vee P_{2,1}\right)$,
$R_{3}: B_{2,1} \Leftrightarrow\left(P_{1,1} \vee P_{2,2} \vee P_{3,1}\right), \quad R_{4}: \neg B_{1,1}, \quad R_{5}: B_{2,1}$

Validity and Satisfiability

- Validity: sentence is true in all models (tautologies)

$$
\begin{gathered}
A \vee \neg A \\
A \vee B \rightarrow A \vee B
\end{gathered}
$$

- Satisfiability: sentence is true in some models

$$
\begin{gathered}
A \vee \neg B \\
A \rightarrow B
\end{gathered}
$$

Determine whether following sentence is valid or satisfiable

$$
((A \wedge B) \rightarrow C) \leftrightarrow(A \rightarrow(B \rightarrow C))
$$

Forward Chaining

Determines if a single proposition symbol q is entailed by the knowledge? (data driven reasoning)

- It begins from known facts and adds conclusions of the implication whose all the premises are known
- for $L_{1,1} \wedge$ breeze $\rightarrow B_{1,1}$ if we know $L_{1,1}$ and breeze then $B_{1,1}$ is added in knowledge base ${ }^{4}$

- Applies Modus Ponens

$$
\frac{\phi \quad \phi \rightarrow \psi}{\psi}
$$

- An and-or tree gets constructed

. location is $[1,1]$

Artificial Intelligence (ZC444)

Backward Chaining

- Works backward from query
- If query Q is known to be true, then no work is needed.
- Otherwise, find those implications whose conclusion is Q
- If all the premises of one of those implications can be proven true (by backward chaining) then Q is true
$P \Rightarrow Q$
- test (Q) is it true ?
$L \wedge M \Rightarrow P \quad \bullet$ test (P) is it true ?
$\begin{aligned} & B \wedge L \Rightarrow M \\ & A \wedge P \Rightarrow L\end{aligned} \quad-\operatorname{test}(L \wedge M)$?
$\begin{array}{ll}A \wedge P \Rightarrow L \\ A \wedge B \Rightarrow L\end{array} \quad-((\operatorname{test}(A \wedge B)$ or test $(A \wedge P))$ and test $(B \wedge L)$? we
${ }^{A}$
B
know A and B so we have L this gives M
- Therefore P and hence Q

Inference in First Order Logic

- Universal Elimination $\forall x$ Feels $(x$, king $)$ could be Feels(Raju, king) substitution $\{x /$ Raju $\}$ is done using some ground term.
- Existential Elimination $\exists x$ Feels $(x$, king) could be Feels (man, king) if man does not appear in knowledge base ${ }^{5}$
- Existential Introduction If Feels(Raju, king) then we can say $\exists x$ Feels(x, king)
(1) It is crime for Magadh to sell formula to a hostile country
(2) Country Bhind, an enemy of Magadh have purchased some formula from Dara
(3) Dara is from Magadh
(9) Question: Is Dara a criminal?
(3) Only one customer have purchased guitar and pen
(9) Highest purchase in forenoon is more than afternoon.

Prolog

- A logic programming language ${ }^{6}$
- Compile as ['a.pl'].
- If :- and , or ; not not
- write('hello'), nl
warm_blood(penguin).
warm_blood(human).
produce-milk(penguin).
produce_mik(khuman). \quad ?- mammal(penguin)
have-feather(penguin). no
mammal $(X):$: \quad ?- mammal (X).
wroduce_mik $(X), \quad X=$ human.
prent
have_hair(X).
is.even (X) :-
Y is $X / / 2, X=2^{*} Y$.
- write (what is your name/ '), read((X), write ('Hi '), write(X$)$.

Many more things are possible

Machine Learning

For some problems we don't precisely know either 1) how to solve, or 2) difficult to specify solution procedure

Then we go for Machine Learning (ML)

[^2]
Machine Learning: Tasks

Two broad categories of machine learning models are Predictive and Descriptive. Some of the related tasks are

Applications of ML

In many domains including finance, robotics, bioinformatics, vision, natural language, etc.

- Spam filtering
- Speech/handwriting recognition
- Object detection/recognition
- Weather prediction
- Stock market analysis
- Search engines (e.g, Google)
- Ad placement on websites
- Adaptive website design
- Credit-card fraud detection
- Webpage clustering (e.g.,Google News)
- Machine Translation (e.g., Google Translate)
- Recommendation systems (e.g., Netflix, Amazon)
- Classifying DNA sequences
- Automatic vehicle navigation
- Performance tuning of computer systems
- Predicting good compilation flags for programs
- .. and many more

Probability of observing a dataset

Assume you are flipping a biased coin where $p(H)=0.4$. What is the probability that you see this dataset $D=<H, H, T, T, H, H>$

- $p(H)=0.4$
- $p(T)=1-p(H)=1-0.4=0.6$
- If all the trails are independent then $p(D \mid \theta)$

$$
\begin{gathered}
=p(H) \times p(H) \times p(T) \times p(T) \times p(H) \times p(H) \\
=0.4^{4} \times 0.6^{2}=0.009216
\end{gathered}
$$

Note: Order of elements in the data set do not matter in the trial. So $p(<H, H, H, H, T, T>)$ is same (in fact any other permutation)

What is θ

It is the parameter. For our case it represents $p(H)=0.4$

Types of Learning

- Supervised: "right answers" are provided for sufficient training examples. Computer tells "right answers" for new input. Performance measure. (Classification and regression)
- Unsupervised: "right answers" are NOT provided and the computer tries to make sense of the data. How good the spread of items is. (clustering and association rule)
- Semi-supervised: "right answers" are provided for few training examples only
- Active: computer can ask questions. Needs less training. Opposite is passive learning
- Lazy: learner do not consolidate the findings.
- Reinforced: hit and trial method to minimize cost. (game playing)
- Transfer: Learning a task B to do A. (cycle riding for bike riding)
- Deep: processing like human brain

The Flow of ML

Artificial Intelligence (ZC444) Sun (10:30-12:00PM) online@BiITS-Pilani Lecture-12 (Oct 29, 2023) \quad 22/28

Hypothesis

X	Y	h_{1}	h_{2}	\ldots
10	0	0	1	...
11	0	0	0	...
12	0	0	1	\ldots
13	1	1	0	...
14	0	1	1	...
15	1	1	0	...
16	0	1	1	\ldots
17	1	1	0	\ldots
18	1	1	1	...

- In this example h_{1}, h_{2}, \ldots are hypothesis.
- Hypothesis is a function that aims to provide value of the Y
- Can you identify h_{1} and h_{2}
- Represent H as candidate set of hypothesis, i.e. $h_{i} \in H$
- Size of H is at least 2^{m}

Bayesian Learning

It is based on assumption that quantities of interest are governed by probability distribution

- Notation
- $P(h)$: initial probability that hypothesis h holds
- $P(D)$: probability that data D will be observed
- $P(D \mid h)$: probability of observing data D given some world in which hypothesis h holds
- $P(h \mid D)$: probability of holding hypothesis h when data D is observed

$$
P(h \mid D)=\frac{P(D \mid h) P(h)}{P(D)}
$$

For our current example

- Let bias for h_{1} and h_{2} be $2 / 50$ and $6 / 50$

X	Y
10	0
11	0
12	0
13	1
14	0
15	1
16	0
17	1
18	1

h_{1}	h_{2}	\ldots
0	1	\ldots
0	0	\ldots
0	1	\ldots
1	1	\ldots
1	1	\ldots
1	0	\ldots
1	1	\ldots
1	0	\ldots
1	1	\ldots

- Since h_{1} and h_{2} are correct with probability $7 / 9$ and $3 / 9$ respectively
- Posterior is $(7 / 9)^{\star}(2 / 50)$ and (3/9)*(6/50)
- Normalized probabilities are 0.4375 and 0.5625 respectively
- So MAP hypothesis corresponds to? h_{2}
- Can ML hypothesis? it is h_{1}
- Brute-force MAP learning algorithm: Evaluates posterior probability for all and returns the one with maximum
- Consistent Learner: learning algorithm is consistent learner if it provides a hypothesis that commits zero error

Maximum a posteriori (MAP)

- Choose a hypothesis that maximizes $P(h \mid D)$

$$
\begin{align*}
h_{\text {MAP }} & =\underset{h \in H}{\operatorname{argmax}} P(h \mid D) \\
& =\underset{h \in H}{\operatorname{argmax}} \frac{P(D \mid h) P(h)}{P(D)} \\
& =\underset{h \in H}{\operatorname{argmax}} P(D \mid h) P(h) \tag{2}
\end{align*}
$$

- Because $P(D)$ is independent of h
- If all the hypothesis are equally probable, we may further simplify called maximum likelihood (ML)

$$
\begin{equation*}
h_{M L}=\underset{h \in H}{\operatorname{argmax}} P(D \mid h) \tag{3}
\end{equation*}
$$

Thank you very much for your attention!
Queries ?

Reference ${ }^{7}$)

[^3]
[^0]: - Show $p \rightarrow q, p \rightarrow \neg q \vdash \neg p$

[^1]: ${ }^{1}$ everything is conjunctions of disjunction
 ${ }^{2}$ no \rightarrow
 ${ }^{3}$ no double negation
 Artiicial Intelligence (ZC444)

[^2]: http://ktiwari.in/ml

[^3]: ${ }^{7}$ 1) Book - AIMA, ch-07/08, Russell and Norvig. 2) Book - Logic in CS, ch-01/02, Mitchel Huth and Mark Ryan. Artificial Intelligence (ZC444) Sun (10:30-12:00PM) online@BiTS-Pilani ${ }^{\text {Lecture-12 (Oct 29, 2023) }} \mathbf{2 8 / 2 8}$

