

Dr. Kamlesh Tiwari
Associate Professor, Department of CSIS, BITS Pilani, Pilani Campus, Rajasthan-333031 INDIA

Nov 20, 2023
WILP @ BITS-Pilani [July-Dec 2023]
http://ktiwari.in/ai

Markov Modal

Transition diagram

Transition matrix

Initial State

$$
S_{0}=\left[\begin{array}{ll}
0.2 & 0.8
\end{array}\right]
$$

$$
A=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.7 & 0.3
\end{array}\right]
$$

- $S_{0}=\left[\begin{array}{ll}0.2 & 0.8\end{array}\right]$
- $S_{1}=S_{0} \times A=\left[\begin{array}{ll}0.74 & 0.26\end{array}\right]$
- $S_{2}=S_{1} \times A=\left[\begin{array}{ll}0.848 & 0.152\end{array}\right]$
- $S_{3}=S_{2} \times A=\left[\begin{array}{ll}0.8696 & 0.1304\end{array}\right]$

Hidden Markov Modal (HMM)

Assume we observe news coverage ($\mathrm{S} / \mathrm{M} / \mathrm{L}$) of some article, to know whether a day was Hot or Cold?

$$
\left.B=\begin{array}{c}
\mathrm{H} \\
\mathrm{H} \\
\mathrm{C}
\end{array} \begin{array}{ccc}
\mathrm{M} & \mathrm{~L} \\
0.1 & 0.4 & 0.5 \\
0.7 & 0.2 & 0.1
\end{array}\right] \quad A=\begin{gathered}
\mathrm{H} \\
\mathrm{H} \\
\mathrm{C}
\end{gathered}\left[\begin{array}{cl}
0.7 & 0.3 \\
0.4 & 0.6
\end{array}\right]
$$

Markov Modal

- Andrev Markav: A canonical probabilistic model for temporal or sequential data. $X_{0} \xrightarrow{A} X_{1} \xrightarrow{A} \ldots \xrightarrow{A} X_{n}$
- Future is independent of past given the present. Assumption is that the present state encode all the history
- Order specifies how many evidences are important. Order three Markov Modal takes last three data
- iid ${ }^{1}$ don't work.
- Temporal data, weather prediction, speech recognition, automatic music generation and handwriting recognition are some of the few applications

Example:

Suppose a company selling a product A (has market share of 20%), launches a advertise campaign that is expected to retain 90% old customers and attract 70% new. What maximum market share the product A can get?
independent and identically distributed

Is it going to saturate?

Stationary matrix

$$
\left[\begin{array}{ll}
a & b
\end{array}\right] \times A=\left[\begin{array}{ll}
a & b
\end{array}\right]
$$

$$
\left[\begin{array}{ll}
a & b
\end{array}\right] \times\left[\begin{array}{ll}
0.9 & 0.1 \\
0.7 & 0.3
\end{array}\right]=\left[\begin{array}{ll}
a & b
\end{array}\right]
$$

what are a and b ? 0.875 and 0.125

- Does it always happen? No, only if matrix is regular
- When some power of the matrix has all positive values
- Which of these are regular?
$\left[\begin{array}{ll}0.3 & 0.7 \\ 0.1 & 0.9\end{array}\right] \quad\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \quad\left[\begin{array}{cc}0.2 & 0.8 \\ 1 & 0\end{array}\right]$

Hidden Markov Modal (HMM)

$$
\left.B=\begin{array}{c}
\mathrm{H} \\
\mathrm{H} \\
\mathrm{C}
\end{array} \begin{array}{ccc}
\mathrm{S} & \mathrm{M} & \mathrm{~L} \\
0.1 & 0.4 & 0.5 \\
0.7 & 0.2 & 0.1
\end{array}\right] \quad A=\begin{gathered}
\mathrm{H} \\
\mathrm{H} \\
\mathrm{C}
\end{gathered}\left[\begin{array}{cl}
0.7 & 0.3 \\
0.4 & 0.6
\end{array}\right]
$$

- Assume initial configuration for H and C be $\pi=\left[\begin{array}{ll}0.6 & 0.4\end{array}\right]$
- And let observations be S, M, S, L
- Then what is $P(H H C C)$?
$0.6 \times 0.1 \times(0.7 \times 0.4) \times(0.3 \times 0.7) \times(0.6 \times 0.1)=0.000212$

Hidden Markov Modal (HMM)

State	Probabiliy	$\begin{aligned} & \text { Normalized } \\ & \text { Probability } \end{aligned}$	Optimum state sequence - In dynamic programming is CCCH - HMM choses most probable symbol at each position. (by summation)		
HमНH	0.000412	0.042787			
HHHC	${ }_{\substack{0.000035 \\ 0.00076}}^{\text {a }}$	${ }^{0.007335}$			
HHCC	${ }^{0.000212}$	0.0222017			
HCHH	${ }^{0.000050} 0$	0.005193 0.000415			
HCCH	${ }^{\text {0.0000302 }}$	${ }^{0.031364}$			
HCCC CHHH cher	${ }^{0.000099} 0$	${ }^{0.0 .099451}$			
${ }^{\text {CHHC }}$	0.000094	0.009765			
${ }_{\text {CHCC }}$	${ }^{0} 0.00018852$	${ }^{0} 0.058573$			
$C+HH$	${ }^{0.0000770} 0$	${ }^{0.0048811}$			
${ }_{\text {CCCH }}$	${ }^{0} 0.0028222$				
cccc	0.000847	0.087963			
		0	1	2	3
	$\mathrm{P}(\mathrm{H})$	0.188182	0.519576	0.228788	0.804029
	$\mathrm{P}(\mathrm{C})$	0.811818	0.480424	0.771212	0.195971

Optimum state sequence in HMM is? CHCH

What about this arrangement?

- This illustration is called as perceptron
- Provides a graphical way to represent the linear boundary
- Values $3,2,-25$ are its parameters or weights

Given a data
"How to find appropriate parameters?" is an important issue

Consider the same data			$\eta=0.01$	
X_{1}	X_{2}	y	$\mathrm{w} 0=0.500, \mathrm{w} 1=0.500, \mathrm{w} 2=0.500$	err=7
1	9	green	w $0=0.360, \mathrm{w}=-0.120, \mathrm{w} 2=0.100$	err=6
10	9	green	W0 $0 . .240, w 1=-.140, w 2=0.140$	err=4
			$\mathrm{w} 0=0.180, \mathrm{w} 1=-0.200, \mathrm{w} 2=0.100$	err=5
4	7	green	$\mathrm{w} 0=0.120, \mathrm{w} 1=-0.160, \mathrm{w} 2=0.180$	err=4
4	5	red	$\mathrm{w}=0.080, \mathrm{w} 1=0.060, \mathrm{w} 2=0.180$ $\mathrm{w} 0=0.020, \mathrm{w} 1=-0.120, \mathrm{w} 2=0.140$	err=5
			$w 0=0.040, w 1=-0.180, w 2=0.100$	err=5
5	3	red	$w 0=0.100, w 1=-0.140, w 2=0.180$	erf=4
8	9	green	w ${ }^{\text {w }}=0.0 .140, w 1=-0.040, w 2=0.180$	err=5
4	2	red	$\mathrm{w} 0=-0.260, \mathrm{w} 1=-0.160, \mathrm{w} 2=0.100$	err=4
			w $0=0.320, w 1=0.120, \mathrm{w} 2=0.180$	err=3
2	5	red	$w 0=0.420, w 1=-0.080, w 2=0.140$	err=2
7	1	red	w $0=-0.420, \mathrm{w} 1=0.080, \mathrm{w} 2=0.240$	err=2
2	10	green	w $0=-0.900, w^{1}=-0.020, w 2=0.180$	err=1
			$w 0=0.900, w_{1}=-0.020, w 2=0.240$	err=2
8	5	green	$\mathrm{w} 0=-0.920, \mathrm{w} 1=0.020, \mathrm{w} 2=0.220$	err=2
1	2	red	$w 0=-0.980, w 1=0.020, w 2=0.200$	err=2
			$\mathrm{w} 0=-1.000, \mathrm{w} 1=0.060, \mathrm{w} 2=0.180$	err=2
8	2	red	$\mathrm{w} 0=-1.040, \mathrm{w} 1=0.020, \mathrm{w} 2=0.180$	err=0

Linear Classification

- Data looks linearly separable
- What is the decision boundary?

Many Possibilities, such as if $\left(2 x_{1}+3 x_{2}-25>0\right)$ it is green otherwise red

Perceptron Training Rule
Different algorithms may converge to different acceptable hypotheses

Algorithm 1: Perceptron training rule
1 Begin with random weights w
2 repeat
3 for each misclassified example do
$\left\lfloor w_{i}=w_{i}+\eta(t-o) x_{i}\right.$
until all training examples are correctly classified;
6 return w

Why would this strategy converge?

(1) Weight does not change when classification is correct
(2) If perceptron outputs -1 when target is +1 : weight increases \uparrow
(3) If perceptron outputs +1 when target is -1 : weight decreases \downarrow

Conversion with perceptron training rule is subject to linear separability of training example and appropriate η

Visual Interpretation

- Conversion is not gradual. (Error is NOT reducing monotonically)
- It is difficult to decide when to stop if data is not linearly separable

Neural Network (NN)

- Cell, Axon, Synopses, Molicules, and Dendrites
- Humans have 10^{11} neurons, each connected to 10^{4} others, switches in $10^{-3} \mathrm{sec}$

NN is biologically motivated learning model that mimic human brain

- Started by W. McCulloch study on working of neurons in 1943
- MADALINE (1959), an adaptive filter that eliminates echoes on phone lines was the first neural network
- Popularity of Neural Network diminished in 90's but, due to advances in processing power and availability of large data it again became state-of-the-art

A Single Perceptron

Perceptron representation

- A single perceptron can represent many boolean functions
- Any m-of- n function (at least m of the n inputs must be true) can be represented by perceptron. OR ($m=1$) and AND ($m=n$)

Two layer NN can represent any boolean function (Consider SOP)

Essentially it Represents A Decision Boundary

Provides positive classification if

$$
-30+20 x_{1}+20 x_{2} \geq 0
$$

Represents a linear decision boundary

Brief History

- 1872 Staining/Reticular Theory of Nervous Tissue

1943 McCulloch \& Pitt (Neuron Model)
1947 Donald Hebb (Hebbian Learning)
1948 Nerbert (Cybernetics, optimal filter, feedback)
1948 Nerbert (Cybernetics, optimal fil
1959 (MADALINE)
1962 Hubel \& Wiesel (Visual Cortex Model)

- 1969 Minsky (Limitations of Perceptron)

1965 Frank Rosenblatt (MLP: Multi Layer Perceptron)

- 1986 (Backpropagation)
- 1989 Universal Approximation Theorem
- 1999 LeCun (ConvNet for MNIST digit)

2006 Unsupervised Pre Training
2010 Dahl. (Speech Recognition)
2012 AlexNet (ImageNet: Computer Vision) $26 \rightarrow 16 \ldots \rightarrow 12 \%$ ziNe
2013 VGG $\rightarrow 7.3$
2014 Google LeNet $\rightarrow 6.7$

- 2015 ResNet $\rightarrow 3.6$
- 2017 DenseNet

Artificial Intelligence (ZC444)

An Example

Consider a perceptron with output $0 / 1$ as below

x_{1}	x_{2}	Output
0	0	0
0	1	0
1	0	0
1	1	1

This perceptron computes logical AND

- $w_{0}=-10$ gives logical OR
- $w_{0}=10, w_{1}=-20$ with single input gives logical NOT
- XOR is not possible (ml2 can do iv)

[^0]
An Example

Design a perceptron for

x_{1}	x_{2}	Classification
0	0	0
0	1	0
1	0	1
1	1	0

We have following four equations

$$
\begin{align*}
& w_{0}+w_{1} \times(0)+w_{2} \times(0)<0 \\
& w_{0}+w_{1} \times(0)+w_{2} \times(1)<0 \\
& w_{0}+w_{1} \times(1)+w_{2} \times(0) \geq 0 \\
& w_{0}+w_{1} \times(1)+w_{2} \times(1)<0 \tag{4}
\end{align*}
$$

Let us assume following

By (1) $w_{0}<0$ so let $w_{0}=-1$
By (2) $w_{0}+w_{2}<0$ so let $w_{2}=-1$
By (3) $w_{0}+w_{1} \geq 0$ so let $w_{1}=1.5$
By (4) $w_{0}+w_{1}+w_{2}<0$ that is valid
So $\left(w_{0}, w_{1}, w_{2}\right)=(-1,-1,1.5)$
Other possibilities are also there

An Example

Design a neural network for

x_{1}	x_{2}	Classification
0	0	0
0	1	0
1	0	1
1	1	0

x_{1}	x_{2}	
0	0	1

This arrangement is mostly avoided, as training is very challenging

More Example: Design NN for the following data

[^1]
Neural Network

When neurons are interconnected in layers

- Number of layers may differ
- Nodes in each intermediate layers may also differ
- Multiple output neurons are used for different class
- Two levels deep NN can represent any boolean function

Neural Network Applications

NN is appropriate for problems with the following characteristics:

- Instances are provided by many attribute-value pairs (more data)
- The target function output may be discrete-valued, real-valued, or a vector of several real or discrete valued attributes
- The training examples may contain errors
- Long training times are acceptable
- Fast evaluation of the target function may be required
- The ability of humans to understand the learned target function is not important

Perceptron Training (delta rule)

Algorithm 2: Gradient Descent (D, η)

1 Initialize w_{i} with random weights

2 repeat

For each w_{i}, initialize $\triangle w_{i}=0$
for each training example $d \in D$ do
Compute output o using model for d whose target is t
For each w_{i}, update $\triangle w_{i}=\triangle w_{i}+\eta(t-o) x_{i}$
For each w_{i}, set $w_{i}=w_{i}+\triangle w_{i}$
8 until termination condition is met;
9 return w

- A date item $d \in D$, is supposed to be multidimensional

$$
d=\left(x_{1}, x_{2}, \ldots, x_{n}, t\right)
$$

- Algorithm converges toward the minimum error hypothesis.
- Linear programming can also be an approach

Generalization, Overfitting, and Stopping Criterion

Continue training until the error on the training examples falls below some predetermined threshold could be a poor strategy

Number of Iterations

- Weight decay or use of validation set (k-fold ?) is suggested
- Input or output encoding can be used

Optimization

We essentially need convexity

$$
f\left(\alpha x_{1}+(1-\alpha) x_{2}\right) \leq \alpha f\left(x_{1}\right)+(1-\alpha) f\left(x_{2}\right)
$$

for all $\alpha \in(0,1)$
It is used in weight update as $w_{i}=w_{i}-\alpha \frac{\partial J}{\partial w_{i}}$

Neuron

Neuron uses nonlinear activation functions (sigmoid, tanh, ReLU, softplus etc.) at the place of thresholding

Coding Example ${ }^{3}$

Consider two class data Logistic Regression
Neural Network
Decision Boundary Bigger hidden layer

${ }^{3}$ https://github.com/dennybritz/nn-from-scratch/blob/master/nn-from-scratch.ipynb Artificial Intelligence (ZC444) \quad Sun (10:30-12:00PM) online@BiTS-Pilani Lecture-16 (Nov 20, 2023) $28 / 34$

Ant Clony Optimization ${ }^{4}$

Swarm intelligence takes inspiration from the social behaviors of insects and of other animals for problem solving

> Pheromone for probability,
${ }^{4}$ Ref-15420 Dorigo, Marco and Birattari, Mauro and Stutzle, Thomas. Ant colony optimization, IEEE computational
intelligence magazine, $1(4)$, pp 28-39, 2006, IEEE Artificial Intelligence (ZC444) Sun (10:30-12:00PM) online@BBITS-Pilani Lecture-16 (Nov 20, 2023) $30 / 34$

Particle Swarm Optimization ${ }^{5}$
Population based stochastic algorithm for optimization of nonlinear functions

- Initialize particles
(2) Calculate fitness of all particle and maintain best-till-now
(3) Who has highest best-till-now
(9) Update particle locations in direction of global fit

Conceptually, it seems to lie somewhere between genetic algorithms and evolutionary programming. It is highly dependent on
 Stochastic processes, ilie evolutionary programming. The adjustment toward pbest and gbest by the particle swarm optimizer is
conceptually similar to the crossover operation utilized by genetic algorithms. It uses the concept of fithess, as all evolutionary
complation paradigms. ${ }_{5}^{5}$ Ref-74943 Kennedy, James and Eberhart, Russell. Particle swarm optimization, International conference on neural networks, vol 4, pp 1942-1948, 1995, IEEE
Artificial Intelligence (ZC444)

Interpretable/Explainable Model

Computers usually do not explain their predictions. How can we develop trust?

- We need causality, transferability, informativeness, fairness and ethical decision
- Transparency has three levels

Simulatibility: one can do it on paper
Decomposability: different parts
Algorithmic transparency: convergence guarantees

- Decision tree and linear models

Fairness in Model

How to ensure that data biases and model inaccuracies do not treat individuals unfavorably on the basis of race, gender, disabilities, and sexual or political orientation?

- Fairness through unawareness
- Equalized odds

$$
P(\hat{y} \mid a=0, Y=y)=P(\hat{y} \mid a=1, Y=y)
$$

- Equalized opportunity

$$
P(\hat{y}=1 \mid a=0, Y=1)=P(\hat{y}=1 \mid a=1, Y=1)
$$

Correlation fallasy, overgeneraization, class imbalance.

[^0]: ${ }^{2}$ MLP (multi layer perceptron) with one-hidden-layer is universal boolean function, capable of expressing any truth table $ص a \mathrm{C}$ $\begin{array}{lll}\text { Artificial Intelligence (ZC444) } \quad \text { Sun (10:30-12:00PM) online@BiTS-Pilani } \quad \text { Lecture-16 (Nov 20, 2023) } & 16 / 34\end{array}$

[^1]: Note: Weights and activation in subsequent layers add power to the model in terms of non linearity

