
CS F364: DESIGN & ANALYSIS OF ALGORITHMS

Lecture-kt10: Binary Search Tree (contd.) + Red-Black Trees

Dr. Kamlesh Tiwari,
Assistant Professor,

Department of Computer Science and Information Systems,
BITS Pilani, Rajasthan-333031 INDIA

Feb 11, 2017 (Campus @ BITS-Pilani Jan-May 2017)

Recap: Binary Search Tree
Search tree data structure supports many dynamic-set operations,
including SEARCH, MINIMUM, MAXIMUM, PREDECESSOR,
SUCCESSOR, INSERT, and DELETE

Can be used as a dictionary and as a priority queue
Basic operations on a binary search tree take time proportional to
the height of the tree
Binary-search-tree property: Let x be a node in a binary search
tree. If y is a node in the

I left subtree of x , then y .key ≤ x .key
I right subtree of x , then y .key ≥ x .key .

We may safely assume all
items to be different
In order traversal is
monotonous

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 2 / 9

Recap: Binary Search Tree
Search tree data structure supports many dynamic-set operations,
including SEARCH, MINIMUM, MAXIMUM, PREDECESSOR,
SUCCESSOR, INSERT, and DELETE
Can be used as a dictionary and as a priority queue

Basic operations on a binary search tree take time proportional to
the height of the tree
Binary-search-tree property: Let x be a node in a binary search
tree. If y is a node in the

I left subtree of x , then y .key ≤ x .key
I right subtree of x , then y .key ≥ x .key .

We may safely assume all
items to be different
In order traversal is
monotonous

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 2 / 9

Recap: Binary Search Tree
Search tree data structure supports many dynamic-set operations,
including SEARCH, MINIMUM, MAXIMUM, PREDECESSOR,
SUCCESSOR, INSERT, and DELETE
Can be used as a dictionary and as a priority queue
Basic operations on a binary search tree take time proportional to
the height of the tree

Binary-search-tree property: Let x be a node in a binary search
tree. If y is a node in the

I left subtree of x , then y .key ≤ x .key
I right subtree of x , then y .key ≥ x .key .

We may safely assume all
items to be different
In order traversal is
monotonous

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 2 / 9

Recap: Binary Search Tree
Search tree data structure supports many dynamic-set operations,
including SEARCH, MINIMUM, MAXIMUM, PREDECESSOR,
SUCCESSOR, INSERT, and DELETE
Can be used as a dictionary and as a priority queue
Basic operations on a binary search tree take time proportional to
the height of the tree
Binary-search-tree property: Let x be a node in a binary search
tree. If y is a node in the

I left subtree of x , then y .key ≤ x .key
I right subtree of x , then y .key ≥ x .key .

We may safely assume all
items to be different
In order traversal is
monotonous

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 2 / 9

Recap: Binary Search Tree
Search tree data structure supports many dynamic-set operations,
including SEARCH, MINIMUM, MAXIMUM, PREDECESSOR,
SUCCESSOR, INSERT, and DELETE
Can be used as a dictionary and as a priority queue
Basic operations on a binary search tree take time proportional to
the height of the tree
Binary-search-tree property: Let x be a node in a binary search
tree. If y is a node in the

I left subtree of x , then y .key ≤ x .key
I right subtree of x , then y .key ≥ x .key .

We may safely assume all
items to be different
In order traversal is
monotonous

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 2 / 9

Search in BST

Algorithm 1: BST-Search(x,k)
1 if x = nil or k = x .key then
2 return x

3 if k < x .key then
4 return BST-Search(x .left ,k)

5 else
6 return BST-Search(x .right ,k)

While searching for 363, which can not be a search sequence

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 3 / 9

Search in BST

Algorithm 2: BST-Search(x,k)
1 if x = nil or k = x .key then
2 return x

3 if k < x .key then
4 return BST-Search(x .left ,k)

5 else
6 return BST-Search(x .right ,k)

While searching for 363, which can not be a search sequence

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 3 / 9

Search in BST

Algorithm 3: BST-Search(x,k)
1 if x = nil or k = x .key then
2 return x

3 if k < x .key then
4 return BST-Search(x .left ,k)

5 else
6 return BST-Search(x .right ,k)

While searching for 363, which can not be a search sequence

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 3 / 9

Minimum Maximum and Successor

Algorithm 4: BST-Minimum(x)
1 while x .left 6= nil do
2 x = x .left

3 return x

Algorithm 5: BST-Maximum(x)
1 while x .right 6= nil do
2 x = x .right

3 return x

Successor is next smallest
number

Algorithm 6: BST-Successor(x)
1 if x .right 6= nil then
2 return BST-Minimum(x.right)

3 y = x .parent
4 while y 6= nil and x = y .right do
5 x = y
6 y = x .parent

7 return y

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 4 / 9

Minimum Maximum and Successor

Algorithm 7: BST-Minimum(x)
1 while x .left 6= nil do
2 x = x .left

3 return x

Algorithm 8: BST-Maximum(x)
1 while x .right 6= nil do
2 x = x .right

3 return x

Successor is next smallest
number

Algorithm 9: BST-Successor(x)
1 if x .right 6= nil then
2 return BST-Minimum(x.right)

3 y = x .parent
4 while y 6= nil and x = y .right do
5 x = y
6 y = x .parent

7 return y

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 4 / 9

Minimum Maximum and Successor

Algorithm 10: BST-Minimum(x)
1 while x .left 6= nil do
2 x = x .left

3 return x

Algorithm 11: BST-Maximum(x)
1 while x .right 6= nil do
2 x = x .right

3 return x

Successor is next smallest
number

Algorithm 12: BST-Successor(x)
1 if x .right 6= nil then
2 return BST-Minimum(x.right)

3 y = x .parent
4 while y 6= nil and x = y .right do
5 x = y
6 y = x .parent

7 return y

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 4 / 9

Insertion in BST

Tree has
I root

Every node has
I key
I left
I right
I parent or p

Algorithm 13: BST-Insert(T,z)
1 y = nil, x = T.root, z.left=nil, z.right=nil
2 while x 6= nil do
3 y=x
4 if z.key < x .key then
5 x=x.left

6 else
7 return x=x.right

8 z.parent = y
9 if y == nil then

10 T.root = z

11 else if z.key < y .key then
12 y.left=z

13 else
14 y.right = z

Time taken is proportional to height of tree

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 5 / 9

Insertion in BST

Tree has
I root

Every node has
I key
I left
I right
I parent or p

Algorithm 14: BST-Insert(T,z)
1 y = nil, x = T.root, z.left=nil, z.right=nil
2 while x 6= nil do
3 y=x
4 if z.key < x .key then
5 x=x.left

6 else
7 return x=x.right

8 z.parent = y
9 if y == nil then

10 T.root = z

11 else if z.key < y .key then
12 y.left=z

13 else
14 y.right = z

Time taken is proportional to height of tree

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 5 / 9

Insertion in BST

Tree has
I root

Every node has
I key
I left
I right
I parent or p

Algorithm 15: BST-Insert(T,z)
1 y = nil, x = T.root, z.left=nil, z.right=nil
2 while x 6= nil do
3 y=x
4 if z.key < x .key then
5 x=x.left

6 else
7 return x=x.right

8 z.parent = y
9 if y == nil then

10 T.root = z

11 else if z.key < y .key then
12 y.left=z

13 else
14 y.right = z

Time taken is proportional to height of tree

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 5 / 9

Insertion in BST

Tree has
I root

Every node has
I key
I left
I right
I parent or p

Algorithm 16: BST-Insert(T,z)
1 y = nil, x = T.root, z.left=nil, z.right=nil
2 while x 6= nil do
3 y=x
4 if z.key < x .key then
5 x=x.left

6 else
7 return x=x.right

8 z.parent = y
9 if y == nil then

10 T.root = z

11 else if z.key < y .key then
12 y.left=z

13 else
14 y.right = z

Time taken is proportional to height of tree
Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 5 / 9

Deletion in BST

Algorithm 17: BST-
Transplant(T,u,v)

1 if u.parent = nil then
2 T .root = v

3 else if u = u.parent .left then
4 u.parent .left = v

5 else
6 u.parent .right = v

7 if v 6= nil then
8 v .parent = u.parent

Algorithm 18: BST-Delete(T,z)
1 if z.left = nil then
2 BST-Transplant(T, z, z.right)

3 else if z.right = nil then
4 BST-Transplant(T, z, z.left)

5 else
6 y = BST-Minimum(z.right) if

y .parent 6= z then
7 BST-Transplant(T, y, z.right)
8 y.right=z.right
9 y.right.parent = y

10 BST-Transplant(T, z, y)
11 y.left=z.left
12 y.left.parent = y

Time is proportional to tree height, (is O(log n) when build randomly)

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 6 / 9

Deletion in BST

Algorithm 19: BST-
Transplant(T,u,v)

1 if u.parent = nil then
2 T .root = v

3 else if u = u.parent .left then
4 u.parent .left = v

5 else
6 u.parent .right = v

7 if v 6= nil then
8 v .parent = u.parent

Algorithm 20: BST-Delete(T,z)
1 if z.left = nil then
2 BST-Transplant(T, z, z.right)

3 else if z.right = nil then
4 BST-Transplant(T, z, z.left)

5 else
6 y = BST-Minimum(z.right) if

y .parent 6= z then
7 BST-Transplant(T, y, z.right)
8 y.right=z.right
9 y.right.parent = y

10 BST-Transplant(T, z, y)
11 y.left=z.left
12 y.left.parent = y

Time is proportional to tree height, (is O(log n) when build randomly)

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 6 / 9

Red-Black Trees
Red black tree is approximately balanced binary search tree that
stores one extra bit of storage per node called color.

It satisfies
following red-black properties:

1 Every node is either red or black
2 The root is black
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black
5 For each node, all simple paths from the node to descendant

leaves contain the same number of black nodes.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 7 / 9

Red-Black Trees
Red black tree is approximately balanced binary search tree that
stores one extra bit of storage per node called color.It satisfies
following red-black properties:

1 Every node is either red or black

2 The root is black
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black
5 For each node, all simple paths from the node to descendant

leaves contain the same number of black nodes.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 7 / 9

Red-Black Trees
Red black tree is approximately balanced binary search tree that
stores one extra bit of storage per node called color.It satisfies
following red-black properties:

1 Every node is either red or black
2 The root is black

3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black
5 For each node, all simple paths from the node to descendant

leaves contain the same number of black nodes.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 7 / 9

Red-Black Trees
Red black tree is approximately balanced binary search tree that
stores one extra bit of storage per node called color.It satisfies
following red-black properties:

1 Every node is either red or black
2 The root is black
3 Every leaf (NIL) is black.

4 If a node is red, then both its children are black
5 For each node, all simple paths from the node to descendant

leaves contain the same number of black nodes.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 7 / 9

Red-Black Trees
Red black tree is approximately balanced binary search tree that
stores one extra bit of storage per node called color.It satisfies
following red-black properties:

1 Every node is either red or black
2 The root is black
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black

5 For each node, all simple paths from the node to descendant
leaves contain the same number of black nodes.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 7 / 9

Red-Black Trees
Red black tree is approximately balanced binary search tree that
stores one extra bit of storage per node called color.It satisfies
following red-black properties:

1 Every node is either red or black
2 The root is black
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black
5 For each node, all simple paths from the node to descendant

leaves contain the same number of black nodes.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 7 / 9

Red-Black Trees
Red black tree is approximately balanced binary search tree that
stores one extra bit of storage per node called color.It satisfies
following red-black properties:

1 Every node is either red or black
2 The root is black
3 Every leaf (NIL) is black.
4 If a node is red, then both its children are black
5 For each node, all simple paths from the node to descendant

leaves contain the same number of black nodes.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 7 / 9

Height of Red-Black Trees
The number of black nodes on any path from, but not including, a
node x to a leaf is called black-height of the node bh(x)

A red-black tree with n internal nodes has height at most 2 log(n + 1)

1 A subtree rooted at x contains at least 2bh(x) − 1 internal nodes
I If the height of x is 0, then x must be a leaf, and the subtree rooted

at x indeed contains 2bh(x) − 1 = 20 − 1 = 1− 1 = 0 internal nodes.
I Consider a node x that has positive height and is an internal node

with two children. Each child has black-height either bh(x) or
bh(x)− 1 depending on whether its color is red or black

I Assume each child has at least 2bh(x)−1 − 1 number of internal
nodes. Thus the subtree rooted at x has
(2bh(x)−1 − 1) + (2bh(x)−1 − 1)− 1 = 2bh(x) − 1 internal nodes.

2 At least half the nodes on any simple path from the root to a leaf,
not including the root, must be black.

3 Black-height of the root must be at least h/2; thus n ≥ 2h/2 − 1
that gets the same.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 8 / 9

Height of Red-Black Trees
The number of black nodes on any path from, but not including, a
node x to a leaf is called black-height of the node bh(x)

A red-black tree with n internal nodes has height at most 2 log(n + 1)

1 A subtree rooted at x contains at least 2bh(x) − 1 internal nodes
I If the height of x is 0, then x must be a leaf, and the subtree rooted

at x indeed contains 2bh(x) − 1 = 20 − 1 = 1− 1 = 0 internal nodes.
I Consider a node x that has positive height and is an internal node

with two children. Each child has black-height either bh(x) or
bh(x)− 1 depending on whether its color is red or black

I Assume each child has at least 2bh(x)−1 − 1 number of internal
nodes. Thus the subtree rooted at x has
(2bh(x)−1 − 1) + (2bh(x)−1 − 1)− 1 = 2bh(x) − 1 internal nodes.

2 At least half the nodes on any simple path from the root to a leaf,
not including the root, must be black.

3 Black-height of the root must be at least h/2; thus n ≥ 2h/2 − 1
that gets the same.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 8 / 9

Height of Red-Black Trees
The number of black nodes on any path from, but not including, a
node x to a leaf is called black-height of the node bh(x)

A red-black tree with n internal nodes has height at most 2 log(n + 1)

1 A subtree rooted at x contains at least 2bh(x) − 1 internal nodes

I If the height of x is 0, then x must be a leaf, and the subtree rooted
at x indeed contains 2bh(x) − 1 = 20 − 1 = 1− 1 = 0 internal nodes.

I Consider a node x that has positive height and is an internal node
with two children. Each child has black-height either bh(x) or
bh(x)− 1 depending on whether its color is red or black

I Assume each child has at least 2bh(x)−1 − 1 number of internal
nodes. Thus the subtree rooted at x has
(2bh(x)−1 − 1) + (2bh(x)−1 − 1)− 1 = 2bh(x) − 1 internal nodes.

2 At least half the nodes on any simple path from the root to a leaf,
not including the root, must be black.

3 Black-height of the root must be at least h/2; thus n ≥ 2h/2 − 1
that gets the same.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 8 / 9

Height of Red-Black Trees
The number of black nodes on any path from, but not including, a
node x to a leaf is called black-height of the node bh(x)

A red-black tree with n internal nodes has height at most 2 log(n + 1)

1 A subtree rooted at x contains at least 2bh(x) − 1 internal nodes
I If the height of x is 0, then x must be a leaf, and the subtree rooted

at x indeed contains 2bh(x) − 1 = 20 − 1 = 1− 1 = 0 internal nodes.

I Consider a node x that has positive height and is an internal node
with two children. Each child has black-height either bh(x) or
bh(x)− 1 depending on whether its color is red or black

I Assume each child has at least 2bh(x)−1 − 1 number of internal
nodes. Thus the subtree rooted at x has
(2bh(x)−1 − 1) + (2bh(x)−1 − 1)− 1 = 2bh(x) − 1 internal nodes.

2 At least half the nodes on any simple path from the root to a leaf,
not including the root, must be black.

3 Black-height of the root must be at least h/2; thus n ≥ 2h/2 − 1
that gets the same.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 8 / 9

Height of Red-Black Trees
The number of black nodes on any path from, but not including, a
node x to a leaf is called black-height of the node bh(x)

A red-black tree with n internal nodes has height at most 2 log(n + 1)

1 A subtree rooted at x contains at least 2bh(x) − 1 internal nodes
I If the height of x is 0, then x must be a leaf, and the subtree rooted

at x indeed contains 2bh(x) − 1 = 20 − 1 = 1− 1 = 0 internal nodes.
I Consider a node x that has positive height and is an internal node

with two children. Each child has black-height either bh(x) or
bh(x)− 1 depending on whether its color is red or black

I Assume each child has at least 2bh(x)−1 − 1 number of internal
nodes. Thus the subtree rooted at x has
(2bh(x)−1 − 1) + (2bh(x)−1 − 1)− 1 = 2bh(x) − 1 internal nodes.

2 At least half the nodes on any simple path from the root to a leaf,
not including the root, must be black.

3 Black-height of the root must be at least h/2; thus n ≥ 2h/2 − 1
that gets the same.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 8 / 9

Height of Red-Black Trees
The number of black nodes on any path from, but not including, a
node x to a leaf is called black-height of the node bh(x)

A red-black tree with n internal nodes has height at most 2 log(n + 1)

1 A subtree rooted at x contains at least 2bh(x) − 1 internal nodes
I If the height of x is 0, then x must be a leaf, and the subtree rooted

at x indeed contains 2bh(x) − 1 = 20 − 1 = 1− 1 = 0 internal nodes.
I Consider a node x that has positive height and is an internal node

with two children. Each child has black-height either bh(x) or
bh(x)− 1 depending on whether its color is red or black

I Assume each child has at least 2bh(x)−1 − 1 number of internal
nodes. Thus the subtree rooted at x has
(2bh(x)−1 − 1) + (2bh(x)−1 − 1)− 1 = 2bh(x) − 1 internal nodes.

2 At least half the nodes on any simple path from the root to a leaf,
not including the root, must be black.

3 Black-height of the root must be at least h/2; thus n ≥ 2h/2 − 1
that gets the same.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 8 / 9

Height of Red-Black Trees
The number of black nodes on any path from, but not including, a
node x to a leaf is called black-height of the node bh(x)

A red-black tree with n internal nodes has height at most 2 log(n + 1)

1 A subtree rooted at x contains at least 2bh(x) − 1 internal nodes
I If the height of x is 0, then x must be a leaf, and the subtree rooted

at x indeed contains 2bh(x) − 1 = 20 − 1 = 1− 1 = 0 internal nodes.
I Consider a node x that has positive height and is an internal node

with two children. Each child has black-height either bh(x) or
bh(x)− 1 depending on whether its color is red or black

I Assume each child has at least 2bh(x)−1 − 1 number of internal
nodes. Thus the subtree rooted at x has
(2bh(x)−1 − 1) + (2bh(x)−1 − 1)− 1 = 2bh(x) − 1 internal nodes.

2 At least half the nodes on any simple path from the root to a leaf,
not including the root, must be black.

3 Black-height of the root must be at least h/2; thus n ≥ 2h/2 − 1
that gets the same.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 8 / 9

Height of Red-Black Trees
The number of black nodes on any path from, but not including, a
node x to a leaf is called black-height of the node bh(x)

A red-black tree with n internal nodes has height at most 2 log(n + 1)

1 A subtree rooted at x contains at least 2bh(x) − 1 internal nodes
I If the height of x is 0, then x must be a leaf, and the subtree rooted

at x indeed contains 2bh(x) − 1 = 20 − 1 = 1− 1 = 0 internal nodes.
I Consider a node x that has positive height and is an internal node

with two children. Each child has black-height either bh(x) or
bh(x)− 1 depending on whether its color is red or black

I Assume each child has at least 2bh(x)−1 − 1 number of internal
nodes. Thus the subtree rooted at x has
(2bh(x)−1 − 1) + (2bh(x)−1 − 1)− 1 = 2bh(x) − 1 internal nodes.

2 At least half the nodes on any simple path from the root to a leaf,
not including the root, must be black.

3 Black-height of the root must be at least h/2; thus n ≥ 2h/2 − 1
that gets the same.

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 8 / 9

Thank You!

Thank you very much for your attention!

Queries ?

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt10 (Feb 11, 2017) 9 / 9

