
CS F364: DESIGN & ANALYSIS OF ALGORITHMS

Lecture-kt17: Fibonacci Heap (contd..) + Graph Algorithms

Dr. Kamlesh Tiwari,
Assistant Professor,

Department of Computer Science and Information Systems,
BITS Pilani, Rajasthan-333031 INDIA

Mar 04, 2017 (Campus @ BITS-Pilani Jan-May 2017)



Fibonacci Heaps (contd..)
A Potential function for Fibonacci Heap is defined as
Φ(H) = t(H) + 2m(H) where t(H) is trees in root-list and m(H) is
number of black node

For following FH

Φ(H) = 5 + 2 × 3 = 11
Unit of potential can pay for a constant amount of work (sufficiently
large to cover the cost of any constant-time pieces of work)
Let D(n) be the the maximum degree of any node in an n-node
Fibonacci heap

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 2 / 12



Fibonacci Heaps (contd..)
A Potential function for Fibonacci Heap is defined as
Φ(H) = t(H) + 2m(H) where t(H) is trees in root-list and m(H) is
number of black node
For following FH

Φ(H) = 5 + 2 × 3 = 11
Unit of potential can pay for a constant amount of work (sufficiently
large to cover the cost of any constant-time pieces of work)
Let D(n) be the the maximum degree of any node in an n-node
Fibonacci heap

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 2 / 12



Fibonacci Heaps (contd..)
A Potential function for Fibonacci Heap is defined as
Φ(H) = t(H) + 2m(H) where t(H) is trees in root-list and m(H) is
number of black node
For following FH

Φ(H) = 5 + 2 × 3 = 11

Unit of potential can pay for a constant amount of work (sufficiently
large to cover the cost of any constant-time pieces of work)
Let D(n) be the the maximum degree of any node in an n-node
Fibonacci heap

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 2 / 12



Fibonacci Heaps (contd..)
A Potential function for Fibonacci Heap is defined as
Φ(H) = t(H) + 2m(H) where t(H) is trees in root-list and m(H) is
number of black node
For following FH

Φ(H) = 5 + 2 × 3 = 11
Unit of potential can pay for a constant amount of work (sufficiently
large to cover the cost of any constant-time pieces of work)

Let D(n) be the the maximum degree of any node in an n-node
Fibonacci heap

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 2 / 12



Fibonacci Heaps (contd..)
A Potential function for Fibonacci Heap is defined as
Φ(H) = t(H) + 2m(H) where t(H) is trees in root-list and m(H) is
number of black node
For following FH

Φ(H) = 5 + 2 × 3 = 11
Unit of potential can pay for a constant amount of work (sufficiently
large to cover the cost of any constant-time pieces of work)
Let D(n) be the the maximum degree of any node in an n-node
Fibonacci heap

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 2 / 12



Fibonacci Heaps (contd..)

Creating a new Fibonacci heap: Φ(H) = 0

Inserting a node: Φ(H) == Φ(H) + 1

Uniting two Fibonacci heaps: Φ(H) == Φ(H1) + Φ(H2)

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 3 / 12



Fibonacci Heaps (contd..)

Creating a new Fibonacci heap: Φ(H) = 0
Inserting a node: Φ(H) == Φ(H) + 1

Uniting two Fibonacci heaps: Φ(H) == Φ(H1) + Φ(H2)

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 3 / 12



Fibonacci Heaps (contd..)

Creating a new Fibonacci heap: Φ(H) = 0
Inserting a node: Φ(H) == Φ(H) + 1

Uniting two Fibonacci heaps: Φ(H) == Φ(H1) + Φ(H2)

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 3 / 12



Extracting the minimum node

Potential before extraction is
t(H) + 2m(H)

After it is at most
(D(n) + 1) + 2m(H)

So O(D(n))

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 4 / 12



Extracting the minimum node

Potential before extraction is
t(H) + 2m(H)

After it is at most
(D(n) + 1) + 2m(H)

So O(D(n))

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 4 / 12



Extracting the minimum node

Potential before extraction is
t(H) + 2m(H)

After it is at most
(D(n) + 1) + 2m(H)

So O(D(n))

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 4 / 12



Extracting the minimum node

Potential before extraction is
t(H) + 2m(H)

After it is at most
(D(n) + 1) + 2m(H)

So O(D(n))

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 4 / 12



Bounding Maximum Degree

Lemma-01
Let y1, y2, ..., yx .degree be the children of x in order they are linked then
yi .degree ≥ i − 2 for i > 1

Proof:

yi was linked when y1, y2, ..., yi−1 were already there so,
x .degree ≥ i − 1
But, yi and x can only be linked if their degree be same
Therefore, at the time of linkage yi .degree ≥ i − 1
Since then it may have lost one child so
yi .degree ≥ i − 2

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 5 / 12



Bounding Maximum Degree

Lemma-01
Let y1, y2, ..., yx .degree be the children of x in order they are linked then
yi .degree ≥ i − 2 for i > 1

Proof:

yi was linked when y1, y2, ..., yi−1 were already there so,
x .degree ≥ i − 1

But, yi and x can only be linked if their degree be same
Therefore, at the time of linkage yi .degree ≥ i − 1
Since then it may have lost one child so
yi .degree ≥ i − 2

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 5 / 12



Bounding Maximum Degree

Lemma-01
Let y1, y2, ..., yx .degree be the children of x in order they are linked then
yi .degree ≥ i − 2 for i > 1

Proof:

yi was linked when y1, y2, ..., yi−1 were already there so,
x .degree ≥ i − 1
But, yi and x can only be linked if their degree be same

Therefore, at the time of linkage yi .degree ≥ i − 1
Since then it may have lost one child so
yi .degree ≥ i − 2

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 5 / 12



Bounding Maximum Degree

Lemma-01
Let y1, y2, ..., yx .degree be the children of x in order they are linked then
yi .degree ≥ i − 2 for i > 1

Proof:

yi was linked when y1, y2, ..., yi−1 were already there so,
x .degree ≥ i − 1
But, yi and x can only be linked if their degree be same
Therefore, at the time of linkage yi .degree ≥ i − 1

Since then it may have lost one child so
yi .degree ≥ i − 2

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 5 / 12



Bounding Maximum Degree

Lemma-01
Let y1, y2, ..., yx .degree be the children of x in order they are linked then
yi .degree ≥ i − 2 for i > 1

Proof:

yi was linked when y1, y2, ..., yi−1 were already there so,
x .degree ≥ i − 1
But, yi and x can only be linked if their degree be same
Therefore, at the time of linkage yi .degree ≥ i − 1
Since then it may have lost one child so

yi .degree ≥ i − 2

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 5 / 12



Bounding Maximum Degree

Lemma-01
Let y1, y2, ..., yx .degree be the children of x in order they are linked then
yi .degree ≥ i − 2 for i > 1

Proof:

yi was linked when y1, y2, ..., yi−1 were already there so,
x .degree ≥ i − 1
But, yi and x can only be linked if their degree be same
Therefore, at the time of linkage yi .degree ≥ i − 1
Since then it may have lost one child so
yi .degree ≥ i − 2

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 5 / 12



Bounding Maximum Degree
Fibonacci Sequence: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

Lemma-02
For k ≥ 0,

Fk+2 = 1 +
k∑

i=0

Fi

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk + Fk+1

= Fk +
(

1 +
k−1∑
i=0

Fi

)

= 1 +
k∑

i=0

Fi

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 6 / 12



Bounding Maximum Degree
Fibonacci Sequence: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

Lemma-02
For k ≥ 0,

Fk+2 = 1 +
k∑

i=0

Fi

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk + Fk+1

= Fk +
(

1 +
k−1∑
i=0

Fi

)

= 1 +
k∑

i=0

Fi

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 6 / 12



Bounding Maximum Degree
Fibonacci Sequence: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

Lemma-02
For k ≥ 0,

Fk+2 = 1 +
k∑

i=0

Fi

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk + Fk+1

= Fk +
(

1 +
k−1∑
i=0

Fi

)

= 1 +
k∑

i=0

Fi

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 6 / 12



Bounding Maximum Degree
Fibonacci Sequence: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

Lemma-02
For k ≥ 0,

Fk+2 = 1 +
k∑

i=0

Fi

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk + Fk+1

= Fk +
(

1 +
k−1∑
i=0

Fi

)

= 1 +
k∑

i=0

Fi

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 6 / 12



Bounding Maximum Degree
Fibonacci Sequence: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

Lemma-02
For k ≥ 0,

Fk+2 = 1 +
k∑

i=0

Fi

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk + Fk+1

= Fk +
(

1 +
k−1∑
i=0

Fi

)

= 1 +
k∑

i=0

Fi

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 6 / 12



Bounding Maximum Degree
Fibonacci Sequence: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

Lemma-02
For k ≥ 0,

Fk+2 = 1 +
k∑

i=0

Fi

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk + Fk+1

= Fk +
(

1 +
k−1∑
i=0

Fi

)

= 1 +
k∑

i=0

Fi

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 6 / 12



Bounding Maximum Degree
Fibonacci Sequence: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2

Lemma-02
For k ≥ 0,

Fk+2 = 1 +
k∑

i=0

Fi

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk + Fk+1

= Fk +
(

1 +
k−1∑
i=0

Fi

)

= 1 +
k∑

i=0

Fi

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 6 / 12



Bounding Maximum Degree

Golden ration: Φ = (1 +
√

(5))/2 is root of the equation x2 = x + 1

Lemma-03

Fk+2 ≥ Φk

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk+1 + Fk

≥ Φk−1 + Φk−2

= Φk−2(Φ + 1) = Φk−2(Φ2)

= Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 7 / 12



Bounding Maximum Degree

Golden ration: Φ = (1 +
√

(5))/2 is root of the equation x2 = x + 1

Lemma-03

Fk+2 ≥ Φk

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk+1 + Fk

≥ Φk−1 + Φk−2

= Φk−2(Φ + 1) = Φk−2(Φ2)

= Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 7 / 12



Bounding Maximum Degree

Golden ration: Φ = (1 +
√

(5))/2 is root of the equation x2 = x + 1

Lemma-03

Fk+2 ≥ Φk

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk+1 + Fk

≥ Φk−1 + Φk−2

= Φk−2(Φ + 1) = Φk−2(Φ2)

= Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 7 / 12



Bounding Maximum Degree

Golden ration: Φ = (1 +
√

(5))/2 is root of the equation x2 = x + 1

Lemma-03

Fk+2 ≥ Φk

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk+1 + Fk

≥ Φk−1 + Φk−2

= Φk−2(Φ + 1) = Φk−2(Φ2)

= Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 7 / 12



Bounding Maximum Degree

Golden ration: Φ = (1 +
√

(5))/2 is root of the equation x2 = x + 1

Lemma-03

Fk+2 ≥ Φk

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk+1 + Fk

≥ Φk−1 + Φk−2

= Φk−2(Φ + 1) = Φk−2(Φ2)

= Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 7 / 12



Bounding Maximum Degree

Golden ration: Φ = (1 +
√

(5))/2 is root of the equation x2 = x + 1

Lemma-03

Fk+2 ≥ Φk

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk+1 + Fk

≥ Φk−1 + Φk−2

= Φk−2(Φ + 1) = Φk−2(Φ2)

= Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 7 / 12



Bounding Maximum Degree

Golden ration: Φ = (1 +
√

(5))/2 is root of the equation x2 = x + 1

Lemma-03

Fk+2 ≥ Φk

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk+1 + Fk

≥ Φk−1 + Φk−2

= Φk−2(Φ + 1) = Φk−2(Φ2)

= Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 7 / 12



Bounding Maximum Degree

Golden ration: Φ = (1 +
√

(5))/2 is root of the equation x2 = x + 1

Lemma-03

Fk+2 ≥ Φk

Proof: Use induction (Base case, for k = 0, is trivial)

Fk+2

= Fk+1 + Fk

≥ Φk−1 + Φk−2

= Φk−2(Φ + 1) = Φk−2(Φ2)

= Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 7 / 12



Bounding Maximum Degree
Lemma-04
size(x) ≥ Fk+2 ≥ Φk where k = x .dergee for an node x in FH

Proof: Let sk be minimum size of a node having degree k . (Bases
cases are s0 = 1, s1 = 2)

size(x) ≥ sk

≥ 2 +
k∑

i=2

syi .degree ≥ 2 +
k∑

i=2

si−2

Use induction to show sk ≥ Fk+2 (base case is trivial). Consider i ≥ 2

sk ≥ 2 +
k∑

i=2

Fi ≥ 1 +
k∑

i=0

Fi = Fk+2

≥ Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 8 / 12



Bounding Maximum Degree
Lemma-04
size(x) ≥ Fk+2 ≥ Φk where k = x .dergee for an node x in FH

Proof: Let sk be minimum size of a node having degree k . (Bases
cases are s0 = 1, s1 = 2)

size(x) ≥ sk

≥ 2 +
k∑

i=2

syi .degree ≥ 2 +
k∑

i=2

si−2

Use induction to show sk ≥ Fk+2 (base case is trivial). Consider i ≥ 2

sk ≥ 2 +
k∑

i=2

Fi ≥ 1 +
k∑

i=0

Fi = Fk+2

≥ Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 8 / 12



Bounding Maximum Degree
Lemma-04
size(x) ≥ Fk+2 ≥ Φk where k = x .dergee for an node x in FH

Proof: Let sk be minimum size of a node having degree k . (Bases
cases are s0 = 1, s1 = 2)

size(x) ≥ sk

≥ 2 +
k∑

i=2

syi .degree ≥ 2 +
k∑

i=2

si−2

Use induction to show sk ≥ Fk+2 (base case is trivial). Consider i ≥ 2

sk ≥ 2 +
k∑

i=2

Fi ≥ 1 +
k∑

i=0

Fi = Fk+2

≥ Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 8 / 12



Bounding Maximum Degree
Lemma-04
size(x) ≥ Fk+2 ≥ Φk where k = x .dergee for an node x in FH

Proof: Let sk be minimum size of a node having degree k . (Bases
cases are s0 = 1, s1 = 2)

size(x) ≥ sk

≥ 2 +
k∑

i=2

syi .degree

≥ 2 +
k∑

i=2

si−2

Use induction to show sk ≥ Fk+2 (base case is trivial). Consider i ≥ 2

sk ≥ 2 +
k∑

i=2

Fi ≥ 1 +
k∑

i=0

Fi = Fk+2

≥ Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 8 / 12



Bounding Maximum Degree
Lemma-04
size(x) ≥ Fk+2 ≥ Φk where k = x .dergee for an node x in FH

Proof: Let sk be minimum size of a node having degree k . (Bases
cases are s0 = 1, s1 = 2)

size(x) ≥ sk

≥ 2 +
k∑

i=2

syi .degree ≥ 2 +
k∑

i=2

si−2

Use induction to show sk ≥ Fk+2 (base case is trivial). Consider i ≥ 2

sk ≥ 2 +
k∑

i=2

Fi ≥ 1 +
k∑

i=0

Fi = Fk+2

≥ Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 8 / 12



Bounding Maximum Degree
Lemma-04
size(x) ≥ Fk+2 ≥ Φk where k = x .dergee for an node x in FH

Proof: Let sk be minimum size of a node having degree k . (Bases
cases are s0 = 1, s1 = 2)

size(x) ≥ sk

≥ 2 +
k∑

i=2

syi .degree ≥ 2 +
k∑

i=2

si−2

Use induction to show sk ≥ Fk+2 (base case is trivial). Consider i ≥ 2

sk ≥ 2 +
k∑

i=2

Fi ≥ 1 +
k∑

i=0

Fi = Fk+2

≥ Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 8 / 12



Bounding Maximum Degree
Lemma-04
size(x) ≥ Fk+2 ≥ Φk where k = x .dergee for an node x in FH

Proof: Let sk be minimum size of a node having degree k . (Bases
cases are s0 = 1, s1 = 2)

size(x) ≥ sk

≥ 2 +
k∑

i=2

syi .degree ≥ 2 +
k∑

i=2

si−2

Use induction to show sk ≥ Fk+2 (base case is trivial). Consider i ≥ 2

sk ≥ 2 +
k∑

i=2

Fi

≥ 1 +
k∑

i=0

Fi = Fk+2

≥ Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 8 / 12



Bounding Maximum Degree
Lemma-04
size(x) ≥ Fk+2 ≥ Φk where k = x .dergee for an node x in FH

Proof: Let sk be minimum size of a node having degree k . (Bases
cases are s0 = 1, s1 = 2)

size(x) ≥ sk

≥ 2 +
k∑

i=2

syi .degree ≥ 2 +
k∑

i=2

si−2

Use induction to show sk ≥ Fk+2 (base case is trivial). Consider i ≥ 2

sk ≥ 2 +
k∑

i=2

Fi ≥ 1 +
k∑

i=0

Fi

= Fk+2

≥ Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 8 / 12



Bounding Maximum Degree
Lemma-04
size(x) ≥ Fk+2 ≥ Φk where k = x .dergee for an node x in FH

Proof: Let sk be minimum size of a node having degree k . (Bases
cases are s0 = 1, s1 = 2)

size(x) ≥ sk

≥ 2 +
k∑

i=2

syi .degree ≥ 2 +
k∑

i=2

si−2

Use induction to show sk ≥ Fk+2 (base case is trivial). Consider i ≥ 2

sk ≥ 2 +
k∑

i=2

Fi ≥ 1 +
k∑

i=0

Fi = Fk+2

≥ Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 8 / 12



Bounding Maximum Degree
Lemma-04
size(x) ≥ Fk+2 ≥ Φk where k = x .dergee for an node x in FH

Proof: Let sk be minimum size of a node having degree k . (Bases
cases are s0 = 1, s1 = 2)

size(x) ≥ sk

≥ 2 +
k∑

i=2

syi .degree ≥ 2 +
k∑

i=2

si−2

Use induction to show sk ≥ Fk+2 (base case is trivial). Consider i ≥ 2

sk ≥ 2 +
k∑

i=2

Fi ≥ 1 +
k∑

i=0

Fi = Fk+2

≥ Φk

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 8 / 12



Bounding Maximum Degree

Corollary
Maximum degree D(n) of any node in an n-node FH is O(log n)

Proof: Let x be a node in an n-node FH
Let k = x .degree
n ≥ size(x) ≥ Φk

Takes logΦ both side
k ≤ logΦ(n)

Therefore, D(n) ≤ logΦ(n)

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 9 / 12



Bounding Maximum Degree

Corollary
Maximum degree D(n) of any node in an n-node FH is O(log n)

Proof: Let x be a node in an n-node FH

Let k = x .degree
n ≥ size(x) ≥ Φk

Takes logΦ both side
k ≤ logΦ(n)

Therefore, D(n) ≤ logΦ(n)

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 9 / 12



Bounding Maximum Degree

Corollary
Maximum degree D(n) of any node in an n-node FH is O(log n)

Proof: Let x be a node in an n-node FH
Let k = x .degree

n ≥ size(x) ≥ Φk

Takes logΦ both side
k ≤ logΦ(n)

Therefore, D(n) ≤ logΦ(n)

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 9 / 12



Bounding Maximum Degree

Corollary
Maximum degree D(n) of any node in an n-node FH is O(log n)

Proof: Let x be a node in an n-node FH
Let k = x .degree
n ≥ size(x) ≥ Φk

Takes logΦ both side
k ≤ logΦ(n)

Therefore, D(n) ≤ logΦ(n)

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 9 / 12



Bounding Maximum Degree

Corollary
Maximum degree D(n) of any node in an n-node FH is O(log n)

Proof: Let x be a node in an n-node FH
Let k = x .degree
n ≥ size(x) ≥ Φk

Takes logΦ both side
k ≤ logΦ(n)

Therefore, D(n) ≤ logΦ(n)

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 9 / 12



Bounding Maximum Degree

Corollary
Maximum degree D(n) of any node in an n-node FH is O(log n)

Proof: Let x be a node in an n-node FH
Let k = x .degree
n ≥ size(x) ≥ Φk

Takes logΦ both side
k ≤ logΦ(n)

Therefore, D(n) ≤ logΦ(n)

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 9 / 12



All-Pairs Shortest Paths (Floyd-Warshall)

Floyd-Warshall algorithm considers the intermediate vertices of a
shortest path

d (k)
ij =

{
wij if k = 0
min(d (k−1)

ij ,d (k)
ik + d (k)

kj ) otherwise

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 10 / 12



All-Pairs Shortest Paths (Floyd-Warshall)

Floyd-Warshall algorithm considers the intermediate vertices of a
shortest path

d (k)
ij =

{
wij if k = 0
min(d (k−1)

ij ,d (k)
ik + d (k)

kj ) otherwise

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 10 / 12



All-Pairs Shortest Paths (Floyd-Warshall)

Floyd-Warshall algorithm considers the intermediate vertices of a
shortest path

d (k)
ij =

{
wij if k = 0
min(d (k−1)

ij ,d (k)
ik + d (k)

kj ) otherwise

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 10 / 12



All-Pairs Shortest Paths

Floyd-Warshall
algorithm takes Θ(V 3)
time

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 11 / 12



Thank You!

Thank you very much for your attention! (Reference1)

Queries ?

1[1] Book - Introduction to Algorithm, By THOMAS H. CORMEN, CHARLES E.
LEISERSON, RONALD L. RIVEST, CLIFFORD STEIN

Design & Analysis of Algo. (CS F364) T Th S (12-1PM) 6164@BITS-Pilani Lecture-kt17 (Mar 04, 2017) 12 / 12


