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Introduction: Keras

● High-level neural networks API, written in Python.

● Capable of running on top of TensorFlow, CNTK, or Theano.

● Everyone has been interacting with Keras as it is in use at Netflix, Uber, Yelp, Instacart, Zocdoc, Square, and many others.

Advantages:

○ It offers consistent & simple APIs i.e. it minimizes the number of user actions required for common use cases.
○ It also provides clear and actionable feedback upon user error.
○ This ease of use does not come at the cost of reduced flexibility, because Keras integrates with lower-level deep learning 

languages (in particular TensorFlow).
○ Runs seamlessly on CPUs and GPUs.
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Installation
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Source: https://keras.io/

1. Install Engine

a. Keras backend engines: TensorFlow, Theano, or CNTK. 

b. It is recommended to install tensorflow because it can be deployed in production via Tensorflow Serving. 

(See the instructions from https://www.tensorflow.org/install/)

2. To install keras on Linux/Mac use, 

a. $ sudo pip install keras



Keras Models
1. The core data structure of Keras is a model, a way to organize layers.

2. The simplest type of model is the Sequential model, a linear stack of layers. 

3. For more complex architectures, Keras functional API can be used that allows to build arbitrary graphs of layers.
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The sequential API allows you to create models layer-by-layer for most problems. It is limited in that it does not allow you to 
create models that share layers or have multiple inputs or outputs.

Alternatively, the functional API allows you to create models that have a lot more flexibility as you can easily define models 
where layers connect to more than just the previous and next layers. In fact, you can connect layers to any other layer. As a 
result, creating complex networks such as siamese networks and residual networks become possible.



Keras Sequential Model
● The Sequential model is a linear stack of layers.

● A Sequential model can be created by passing a list of layer instances to the constructor:

● The layers can be stacked using the .add():

from keras.models import Sequential
from keras.layers import Dense, Activation

model = Sequential([
    Dense(32, input_shape=(784,)),
    Activation('relu'),
    Dense(10),
    Activation('softmax'),
])

model = Sequential()
model.add(Dense(32, input_shape=(784,)))
model.add(Activation('relu'))
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1. Specifying the input shape

The first layer in a Sequential model expects information regarding the shape of the input. 

This can be done by passing a value to the input_shape argument to the first layer. Batch size is not included to this argument.

Note: The model will take as input arrays of shape (*, 784) and output arrays of shape (*, 32). 

model = Sequential()
model.add(Dense(32, input_shape=(784,)))
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2.      Compilation
The learning process is configured via the compile method. 

Three arguments are compulsory: 

● Optimizer: This can be a string identifier of an existing optimizer (such as SGD, adam,rmsprop etc.), or an instance of the 

Optimizer class. See https://keras.io/optimizers 

● Loss function: This is the objective function that the model aims to minimize. It is a string identifier of an existing loss 

function such as categorical_crossentropy, binary_crossentropy, mean_squared_error etc. (see https://keras.io/losses) 

● Metrics. A metric is a function that is used to judge the performance of your model. A metric function is similar to a loss 

function, except that the results from evaluating a metric are not used when training the model. See https://keras.io/metrics 

# For a binary classification problem

model.compile(optimizer='rmsprop',loss='binary_crossentropy', metrics=['accuracy'])

compile(optimizer, loss=None, metrics=None, loss_weights=None, sample_weight_mode=None, weighted_metrics=None, 
target_tensors=None)
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3.    Training 

Keras models are trained on Numpy arrays of input data and labels. For training a model, the fit function is used.

● x is the input data. A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).
● y is the target data. A Numpy array (or array-like), or a list of arrays (in case the model has multiple inputs).
● batch_size: Integer or None. Number of samples per gradient update. If unspecified, batch_size will default to 32.
● epochs: Integer. Number of epochs to train the model. An epoch is an iteration over the entire x and y data provided.
● verbose: Integer. 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch.
● Callbacks: A callback is a set of functions that can be used to get a view on internal states and statistics of the model during 

training such as History() or ModelCheckpoint() etc.
● validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data.
● shuffle: Boolean (whether to shuffle the training data before each epoch).

fit(x=None, y=None, batch_size=None, epochs=1, verbose=1, callbacks=None, validation_split=0.0, 
validation_data=None, shuffle=True, class_weight=None, sample_weight=None, initial_epoch=0, steps_per_epoch=None)

import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(10, size=(1000, 1))

# Convert labels to categorical one-hot encoding
one_hot_labels = keras.utils.to_categorical(labels, num_classes=10)

# Train the model, iterating on the data in batches of 32 samples
model.fit(data, one_hot_labels, epochs=10, batch_size=32)
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4.    Predict

Generates output predictions for the input samples. Computation is done in batches.

5.    Evaluate

Returns the loss value & metrics values for the model in test mode.

● batch_size: Integer or None. Number of samples per gradient update. If unspecified, batch_size will default to 32. 

● verbose: Verbosity mode, 0 - silent or 1- progress bar.

● steps: Total number of steps (batches of samples) before declaring the prediction/evaluation round finished. Ignored with the default value of None.

predict(x, batch_size=None, verbose=0, steps=None, callbacks=None)

evaluate(x=None, y=None, batch_size=None, verbose=1, sample_weight=None, steps=None, callbacks=None)
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Keras functional API
● The Keras functional API is the way to go for defining complex models, such as multi-output models, directed acyclic graphs, or 

models with shared layers.
● The following example includes all layers required in the computation of b given a.

● In the case of multi-input or multi-output models, you can use lists as well:

● It also has compile(), fit(), predict() and evaluate() as the Sequential Model.

from keras.models import Model
from keras.layers import Input, Dense

a = Input(shape=(32,))
b = Dense(32)(a)
model = Model(inputs=a, outputs=b)

model = Model(inputs=[a1, a2], outputs=[b1, b2, b3])
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Keras Layers
1. Conv2D

This layer creates a convolution kernel that is convolved with the layer input to produce a tensor of outputs.

2. Conv2DTranspose
This refers to the transposed convolution layer (sometimes called Deconvolution). The need for transposed convolutions 

generally arises from the desire to use a transformation going in the opposite direction of a normal convolution.

keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding='valid')

keras.layers.Conv2DTranspose(filters, kernel_size, strides=(1, 1), padding='valid')
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3.    MaxPooling2D

This layer performs Max pooling operation for spatial data.

4.    Dense
Dense implements the operation: output = activation(dot(input, kernel) + bias) where activation is the element-wise 
activation function passed as the activation argument, kernel is a weights matrix created by the layer, and bias is a bias vector 
created by the layer (only applicable if use_bias is True).

  

5.   Dropout
Dropout consists in randomly setting a fraction rate of input units to 0 at each update during training time, which helps prevent 
overfitting.

keras.layers.MaxPooling2D(pool_size=(2, 2), strides=None, padding='valid')

model.add(Dense(32, input_shape=(16,)))

keras.layers.Dropout(rate, noise_shape=None, seed=None)
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6.   Flatten

Flattens the input. Does not affect the batch size.

Here, data_format can have value either channels_last (default) or channels_first. The ordering of the dimensions in the 
inputs. The purpose of this argument is to preserve weight ordering when switching a model from one data format to another.

7.   Batch Normalization

Normalize the activations of the previous layer at each batch, i.e. applies a transformation that maintains the mean activation close 
to 0 and the activation standard deviation close to 1.

Here, axis refers to the axis that should be normalized.

keras.layers.BatchNormalization(axis=-1)

keras.layers.Flatten(data_format=None)
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Coding Example
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The Problem: Fashion MNIST classification

 Classify the Fashion-MNIST dataset using a Convolutional Neural Network 
(CNN) architecture.

Fashion-MNIST database (https://github.com/zalandoresearch/fashion-mnist) 
is similar to MNIST dataset (having 10 categories of handwritten digits). It 
shares the same image size (28x28) and structure of training (60,000) and   
testing (10,000) splits.  Categories are (0) T-shirt/top,  (1) Trouser, (2) 
Pullover,  (3) Dress, (4) Coat, (5) Sandal, (6) Shirt, (7) Sneaker, (8) Bag, (9) 
Ankle boot

http://yann.lecun.com/exdb/mnist/


1. Importing Libraries

import numpy as np
from keras.utils import to_categorical
import matplotlib.pyplot as plt
#matplotlib inline
from keras.datasets import fashion_mnist
from sklearn.model_selection import train_test_split
import keras

from keras.models import Sequential,Input,Model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import LeakyReLU
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2. Load the Data

(train_X,train_Y), (test_X,test_Y) = fashion_mnist.load_data()

print('Training data shape : ', train_X.shape, train_Y.shape)

print('Testing data shape : ', test_X.shape, test_Y.shape)

# Find the unique numbers from the train labels
classes = np.unique(train_Y)
nClasses = len(classes)
plt.figure(figsize=[5,5])

# Display the first image in training data
plt.subplot(121)
plt.imshow(train_X[0,:,:], cmap='gray')
plt.title("Ground Truth : {}".format(train_Y[0]))

# Display the first image in testing data
plt.subplot(122)
plt.imshow(test_X[0,:,:], cmap='gray')
plt.title("Ground Truth : {}".format(test_Y[0]))
plt.show()
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3. Data Preprocessing

train_X = train_X.reshape(-1, 28,28, 1)
test_X = test_X.reshape(-1, 28,28, 1)
train_X.shape, test_X.shape
train_X = train_X.astype('float32')
test_X = test_X.astype('float32')
train_X = train_X / 255.
test_X = test_X / 255.

# Change the labels from categorical to one-hot encoding
train_Y_one_hot = to_categorical(train_Y)
test_Y_one_hot = to_categorical(test_Y)

# Display the change for category label using one-hot encoding
print('Original label:', train_Y[0])
print('After conversion to one-hot:', train_Y_one_hot[0])

#Splitting the dataset in training (80%) and testing (20%)
train_X,valid_X,train_label,valid_label = train_test_split(train_X, train_Y_one_hot, 
test_size=0.2, random_state=13)

#Checking the size again
train_X.shape,valid_X.shape,train_label.shape,valid_label.shape
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4. Model
batch_size = 64
epochs = 20
num_classes = 10

#Architecture
fashion_model = Sequential()
fashion_model.add(Conv2D(32, kernel_size=(3,3),activation='linear',input_shape=(28,28,1),padding='same'))
fashion_model.add(LeakyReLU(alpha=0.1))
fashion_model.add(MaxPooling2D((2, 2),padding='same'))
fashion_model.add(Conv2D(64, (3, 3), activation='linear',padding='same'))
fashion_model.add(LeakyReLU(alpha=0.1))
fashion_model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
fashion_model.add(Conv2D(128, (3, 3), activation='linear',padding='same'))
fashion_model.add(LeakyReLU(alpha=0.1))                  
fashion_model.add(MaxPooling2D(pool_size=(2, 2),padding='same'))
fashion_model.add(Flatten())
fashion_model.add(Dense(128, activation='linear'))
fashion_model.add(LeakyReLU(alpha=0.1))                  
fashion_model.add(Dense(num_classes, activation='softmax'))

#Compilation of model
fashion_model.compile(loss=keras.losses.categorical_crossentropy, 
optimizer=keras.optimizers.Adam(),metrics=['accuracy'])
fashion_model.summary()

#Train the model
fashion_train = fashion_model.fit(train_X, train_label, 
batch_size=batch_size,epochs=epochs,verbose=1,validation_data=(valid_X, valid_label))
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5. Model Evaluation

test_eval = fashion_model.evaluate(test_X, test_Y_one_hot, verbose=0)
print('Test loss:', test_eval[0])
print('Test accuracy:', test_eval[1])

accuracy = fashion_train.history['acc']
val_accuracy = fashion_train.history['val_acc']
loss = fashion_train.history['loss']
val_loss = fashion_train.history['val_loss']
epochs = range(len(accuracy))
plt.plot(epochs, accuracy, 'bo', label='Training accuracy')
plt.plot(epochs, val_accuracy, 'b', label='Validation accuracy')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
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5. Predict Labels

predicted_classes = fashion_model.predict(test_X)
predicted_classes = np.argmax(np.round(predicted_classes),axis=1)
predicted_classes.shape, test_Y.shape
correct = np.where(predicted_classes==test_Y)[0]
print ('Found %d correct labels',len(correct))
for i, correct in enumerate(correct[:9]):
    plt.subplot(3,3,i+1)
    plt.imshow(test_X[correct].reshape(28,28), cmap='gray', interpolation='none')
    plt.title("Predicted {}, Class {}".format(predicted_classes[correct], test_Y[correct]))
    plt.tight_layout()
plt.show()

incorrect = np.where(predicted_classes!=test_Y)[0]
print ("Found %d incorrect labels",len(incorrect))
for i, incorrect in enumerate(incorrect[:9]):
    plt.subplot(3,3,i+1)
    plt.imshow(test_X[incorrect].reshape(28,28), cmap='gray', interpolation='none')
    plt.title("Predicted {}, Class {}".format(predicted_classes[incorrect], test_Y[incorrect]))
    plt.tight_layout()
plt.show()
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Correct Incorrect 

Prediction
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6.    Generating Classification Report

from sklearn.metrics import classification_report
target_names = ["Class {}".format(i) for i in 
range(num_classes)]
print(classification_report(test_Y, predicted_classes, 
target_names=target_names)) 
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Precision: What proportion of positive identifications was actually correct?
Recall: What proportion of actual positives was identified correctly?



Homework

1. Code the model discussed the class and get the results for different architectural settings 

- Change layers

- Add dropout

- Change optimizers and parameters 

2. Apply same on MNIST database

Report what changes you observe in accuracy. What is the best accuracy you have achieved?



Thank You !


