Class Notes/Presentations
						 
      
          
          
          -  Course handout is here.  [pdf]  (Jan 15, 2021) 
 
          -    Lecture-01: Introduction and Logistics   (Jan 18, 2021)   [pdf]   
                 [video] 
 
          -    Lecture-02: Basics of Machine Learning   (Jan 20, 2021)   [pdf]   
                  [video]   
 
          -    Lecture-03-04: Performance Evaluation   (Jan 22-25, 2021)   [pdf]   
                  [video1] [video2] 
 
          -    Lecture-05: Towards Bayesian Machine Learning   (Aug 27, 2021)  [pdf]  
                  [video] 
 
          -    Lecture-06: Bayesian Learning (MAP and ML)    (Aug 29, 2021)  [pdf]  
                  [video] 
 
          -    Lecture-07: SSD, Lagrange Multiplier    (Feb 01, 2021)  [pdf]  
                  [video] 
 
          -    Lecture-08: Expectation Maximization and SVD   (Feb 03, 2021)  [pdf]  
                  [video] 
 
          -    Lecture-09: Curse of Dimensionality, PCA and Eigenfaces   (Feb 05, 2021)  [pdf]  
                  [video] 
 
          -    Lecture-10: Maximum Desription Length (MDL)   (Feb 08, 2021)  [pdf]  
                 [video]  
 
          -    Lecture-11: Hidden Markov Model (HMM)   (Feb 10, 2021)  [pdf]  
                 [video]  
 
          -    Lecture-12+13+14: Concept Learning    (Feb 12+15+17, 2021)  [pdf]  
                 [video1] [video2] [video3] 
  
          -    Lecture-15+16: Classification: K-NN, Decision Tree   (Feb 19+22, 2021)  [pdf]  
                 [video1] [video2] 
  
          -    Lecture-17: Decision Tree (contd..) + Random Forest   (Feb 24, 2021)  [pdf]  
                 [video] 
  
          -    Lecture-18: Clustering: K-Means  (Feb 26, 2021)  [pdf]  
                 [video] 
  
          -    Mid-Sem Test  (March 02, 2021) 
  
          -    Lecture-19: Naive Bayes Classifier  (March 08, 2021)  [pdf]  
                 [video] 
  
          -    Lecture-20: Linear Regression  (March 10, 2021)  [pdf]  
                 [video] 
  
          -    Lecture-21: Logistic Regression  (March 12, 2021)  [pdf]  
                 [video]  
  
          -    Lecture-22: Graphical Model: Bayesian Belief Networks  (March 15, 2021)  [pdf]  
                 [video]  
  
          -    Lecture-23: PAC Learning  (March 17, 2021)  [pdf]  
                 [video] 
  
          -    Lecture-24: SOM, VC-Dimension and Monte Carlo Simulation (March 19, 2021)  [pdf]  
                 [video] 
  
          -    Lecture-25: SVM  (March 22, 2021)  [pdf]  
                 [video] 
  
          -    Lecture-26: Kernel SVM  (March 26, 2021)  [pdf]  
                  [video] 
  
          -    Lecture-27: Boosting Bagging  (March 28, 2021)  [pdf]  
                  [video] 
  
          -    Lecture-28: Genetic Algorithms  (March 31, 2021)  [pdf]  
                  [video] 
  
          -    Lecture-29: Reinforcement Learning  (April 05, 2021)  [pdf]  
                  [video]  
  
          -    Lecture-30: Active Learning, Metric Learning  (April 07, 2021)  [pdf]  
                  [video] 
  
          -    Lecture-31,32,33: Neural Networks  (April 09+12+16, 2021)  [pdf]  
                  [video1] 
                  [video2] 
                  [video3] 
  
          -    Lecture-34: Sequence Modeling in NN  (April 19, 2021)  [pdf]  
                  [video] 
  
          -    Lecture-35,36: Introduction to Computer Vision  (April 23, 2021)  [pdf]  
                  [video1] 
                  [video2] 
  
          -    Lecture-37: Convolutional Neural Networks (CNN)  (April 28, 2021)  [pdf]  
                  [video] 
  
          -    Lecture-38: Popular CNN Architectures  (April 30, 2021)  [pdf]  
                  [video]